
PalaeoMath 101 

Groups III: Cluster Analysis 
 
Over the last two essays we’ve discussed strategies for undertaking the analysis of 
multivariate datasets that are known to be characterized by a group-level substructure. This 
covers a lot of what we might need to do in terms of the evaluation of a priori group-based 
hypotheses. But what do we do if we suspect groups may present in our data, but don’t have 
a very good idea who belongs to which group? If the groups are very obvious we can, of 
course, run the data through a procedure that assumes the presence of a single group (e.g., 
PCA, PCoord, Correspondence Analysis) and check the ordination plots. In such cases 
obvious clusters of data points that account for a high proportion of the sample variance 
should show up as distinct clouds of points in the space created the first few eigenvectors of 
the similarity matrix. But this will not always be the case, especially if the group-level structure 
is diffuse and/or swamped by other sources of variation. In such instances the standard 
approach would be to employ a formal ‘cluster analysis’. 
 
Cluster analysis is one of the oldest approaches to multivariate data analysis, tracing its 
origins back at least to the 1930s and 40s. It really came into its own, though, in the 1950s 
and 1960s when taxonomists began using numerical algorithms coded for processing on (the 
then new) computers to make the process of creating a classification more objective. This led 
to creation of the school of numerical taxonomy. Cluster analysis was the data analysis 
method of choice for most numerical taxonomists (see Sokal and Sneath 1963; Sneath and 
Sokal 1973). It is also one of the most widely used of all multivariate data analysis procedures 
with a solid literature of applications in fields ranging throughout the natural and social 
sciences and even on to areas such market research, advertising, and bioinformatics. On the 
face of it then, cluster analysis has an impressive history. Nevertheless, I must admit to 
finding the entire subject very ad hoc, lacking in organized development, and frustrating. So, 
with that personal caveat, and with a firm commitment to try not to let my own biases show 
through (too much), let’s begin. 
 
The best way to begin, of course, is with an example. Let’s return to our old friends the 
trilobites and select a small subset of the previous data to illustrate some basic principles 
(Table 1). 
 

Table 1. Trilobite data     

 Body Glabella Glabella 

Genus Length (mm) Length (mm) Width (mm) 

Acaste 23.14 3.50 3.77 

Cheirurus 31.74 9.33 12.11 

Phacops 27.23 5.30 8.19 

Rhenops 55.94 19.00 13.10 

Trimerus 89.43 23.18 21.52 

Minimum 23.14 3.50 3.77 

Maximum 89.43 23.18 21.52 

Range 66.29 19.68 17.75 

Mean 45.50 12.06 11.47 

Variance 765.45 74.56 43.44 

 

 
Since we wish to combine these taxa into groups based on the data we have collected (in this 
case distances between corresponding features of the body), our first task it to decide on a 
quantitative index we can use to summarize similarities and differences among these genera. 
These distances are represented by real numbers so we’ll need to use an index designed to 
take advantage of fractional units. Since we are interested in relations between objects (= the 
Q-mode problem), the most obvious choice would to calculate a ‘straight-line’ or Euclidean 
distance between genera in the space formed by the three measured variables. Either of 
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formulations of the Euclidean distance are the typical choices, the standard Euclidean 
distance … 
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In both equations i represents the i

th
 specimen, j represents the j

th
 specimen, and p 

represents the total number of variables measured on each specimen. The only difference 
between these two indices is that the former produces a result whose units are the same as 
those of the original variables whereas the latter produces a result in squared units. Obviously 
this assumes all variables have been measured in the same units, which is the case for our 
data. 
 
But there is a further decision we must make. Note the range of the body length variable is 
many times the magnitude of the lengths of the glabellar variables. This difference means the 
a greater proportion of the distance between genera will be due to differences in the body 
length than between glabellar length or width. Accordingly, the body length variable will 
‘count’ more in expressing differences between genera than the glabellar variables.  
 
As we’ve seen before, this forces us to decide whether differences between variables are part 
of the signal we’re trying to assess or a nuisance factor. While most texts would recommend 
standardizing the variables to remove between-variable magnitude differences, my 
recommendation is to think more closely about this. If all variables are measured in the same 
units (in this case mm) differences between variables cannot always be regarded as artificial. 
In such cases the differences—and so the variables—should be maintained in their original 
form unless there is a good reason to do so. If the variable set includes mixed types some of 
which are intrinsically different in terms of their magnitude than others or if the difference 
between variables is not part of the hypothesis you wish to test (e.g., you’re interested in a 
size-free analysis of similarity), it’s best to standardize the variables as this operation forces 
them to account for the same proportion of overall sample variance. For our example we’ll 
leave the variables in their raw form and use the Euclidean distance index (eqn. 12.1). Table 
2 shows these distances for the Table 1 data. 
 
Table 2. Euclidean distance matrix. 

 Acaste Cheirurus Phacops Rhenops Trimerus 

Acaste 0.00 13.32 6.29 37.46 71.39 
Cheirurus 13.32 0.00 7.20 26.08 60.07 
Phacops 6.29 7.20 0.00 32.18 66.07 

Rhenops 37.46 26.08 32.18 0.00 34.78 
Trimerus 71.39 60.07 66.07 34.78 0.00 

 
By now the concepts behind, and overall form of, a Q-mode distance matrix should seem 
familiar. If not, go back and read the previous columns on r-mode and Q-mode analyses. 
There are other distance measures we could have used. The raw Euclidean distance ignores 
the between-variables covariance structure. If the covariance structure can be estimated to a 
reasonable degree of certainty, the Mahalanobis distance might be a better choice (see the 
Groups I column). Similarly, L. W. Penrose (1953) proposed a distance measure that could 
be used if multiple specimens from each genus were available. If we assume for a moment 
that Table 1 represents a matrix of means rather than individual measurements, the Penrose 
and Mahalanobis distance matrices for the example data are shown in tables 3 and 4. 
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Table 3. Mahalanobis distance matrix. 

 Acaste Cheirurus Phacops Rhenops Trimerus 

Acaste 0.00 2.83 1.51 2.56 2.74 
Cheirurus 2.83 0.00 1.47 2.55 2.73 
Phacops 1.51 1.47 0.00 2.56 2.27 
Rhenops 2.56 2.55 2.56 0.00 2.78 
Trimerus 2.74 2.73 2.27 2.78 0.00 

 
 
Table 4. Penrose distance matrix. 

 Acaste Cheirurus Phacops Rhenops Trimerus 

Acaste 0.00 0.72 0.17 2.21 6.06 
Cheirurus 0.72 0.00 0.20 0.68 2.99 
Phacops 0.17 0.20 0.00 1.38 4.48 

Rhenops 2.21 0.68 1.38 0.00 1.11 
Trimerus 6.06 2.99 4.48 1.11 0.00 

 
A careful inspection of tables 2-4 will show that the various estimates of between-genus 
similarity are quite different. Which distance index is best? That tends to be a matter of 
opinion. For this very simple dataset I’d argue the original Euclidean distance matrix makes 
the fewest assumptions about the data. But if we were analyzing a larger dataset, the choice 
might not be so clear. Moreover, these are the only three alternative indices. We don’t have 
the space to go into all of the various distance measures that have been devised, but exotica 
such as the Bhattacharya distance, Bray and Curtis distance, Canberra distance, Gower 
distance, Chebychev distance, Chi-square distance, squared-chord distance, geodesic 
distance, Manhattan distance, etc. would all be potential alternatives. And that’s just for the 
distance indices. If we were looking for a index that represented similarity as an angle 
between the vectors representing specimens in the variable space

1
 we’d have another range 

of choices. By the same token, if we had a data matrix composed of binary, state codes (e.g., 
present/absent, large/small, simple/complex) we’d have another very extensive set of 
association indices that could be used to express similarity based on the proportion of shared 
presences and, in some cases, shared absences (e.g., Jaccard Index, Dice Index, Otsuka 
Index). There are also probability-based indices, indices for use with proportions, the list is 
virtually endless. To be honest, any of these similarity measures could also be used as the 
basis of a principal coordinates or Q-mode factor analysis (see the columns covering those 
methods). But in practice you simply don’t see as much variation in the manner inter-object or 
inter-variable similarity is expressed in the theoretical development, or practical application, of 
these approaches compared to cluster analysis. 
 
Once you’ve settled on an index you feel is appropriate to gauging similarity among your 
specimens, your next decision involves a choice of overall clustering strategy. Almost every 
textbook treatment offers a different taxonomy of clustering approaches. I’m going to restrict 
my discussion to the two most frequently used approaches: hierarchical agglomerative 
clustering and partition-based clustering. 
 
Hierarchical agglomerative clustering is a classic top-down approach. At the beginning of the 
process each specimen is regarded as its own unique group. Then, as the level of similarity is 
progressively lowered, the separate groups are allowed to merge and the agglomeration 
history tracked. The procedure ends when all specimens have been collected into a single 
group. 
 
The simplest hierarchical agglomerative clustering method is called single linkage or nearest 
neighbour analysis. The single linkage agglomeration history for the matrix shown in Table 2. 

                                                        
1
 This is the approach we’d use if we had mixed variable types in our data matrix. 



 4 

 
 

Table 5. Cluster formation sequence. Abbreviations as follows: A – 
Acaste, C – Cheirurus, P – Phacops, R – Rhenops, T - Trimerus 

Distance Grouping History 

0.00 A,C,P,R.T 
6.29 (A,P),C,R,T 

7.20 (A,P,C),R,T 
13.32 - 
26.08 (A,P,C,R), T 
32.18 - 
34.78 (A,P,C,R,T) 
60.07 - 
66.07 - 
71.39 - 

 
Under single-linkage cluster analysis the values in similarity/dissimilarity matrix are placed 
into rank order either from greatest to least (similarity) or least to greatest (dissimilarity, left 
column) and the objects or specimens joined into groups based on the greatest similarities 
between them (right column).  
 
Stepping through this analysis, after 0.00 level, at which level all genera exist as discrete 
groups, the next greatest similarity value is 6.29. This is the distance between Acaste and 
Phacops (Table 2). So, at this level these two genera are joined to form a single group 
symbolized by the parentheses in the right-hand column of Table 6. Moving down the 
similarity value list we find 7.20, which is the level of distance-based similarity between 
Cheirurus and Phacops. Since Phacops is part of the Acaste-Phacops group, Cheirurus joins 
that group at the 7.20 level. The fourth smallest distance value is 13.32, which links Acaste 
and Cheirurus. However, since these two genera were already linked into the same group in 
the previous step the group structure is maintained through this level. Next there is a big 
decrease in the set of similarity values to 26.08 where Rhenops joins the Acaste-Phacops-
Cheirurus group by virtue of its similarity with Cheirurus. This structure is also maintained 
through the 32.18 similarity mark that links Rhenops with Phacops. Lastly, Trimerus joins the 
main cluster at a distance level of 34.78 through its similarity with Rhenops. At this point all 
genera have joined the same group, so the analysis is complete. Graphically the structure of 
the Euclidean distance matrix under single linkage cluster analysis can be summarized by 
tree-like diagram called a dendrogram (Fig. 1). 
 

 

 
Figure 1. Single linkage dendrogram for the five-genus example trilobite data (see tables 1 and 2). 

 
While dendrograms summarizes the structure of similarity matrices, by themselves they don’t 
tell you where the cluster or group boundaries are. What they do tell you is that, at a distance-
similarity value 0.00, there are five groups and at 34.78 there is only one. A dashed line has 
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been drawn in the middle of the greatest step between distance-similarity values that resulted 
in consolidation of the structure. This gap forms a natural subdivision in the distance data. 
With respect to these data this level corresponds to a ‘morphological gap’ of some type. Thus, 
it would make sense to set our grouping criterion at this level, in which case three clusters 
would be recognized: Acaste-Phacops-Cheirurus, Rhenpops, and Trimerus. This level-based 
approach to interpreting dendrograms is used throughout agglomerative, hierarchical 
clustering procedures with the level itself being referred to as the phenon line by numerical 
taxonomists and the cut line by statisticians. The problem, of course, is that the number of 
groups identified depends o where the phenon line is drawn, but there are no widely applied 
rules to guide this choice. The gap approach used above is one way to approach the issue o 
phenon line location. There are others (see below).  
 
Generally speaking this result accords well with our data (see Table 1). Acaste, Phacops, and 
Cheirurus are all small individuals—in our dataset, at least—with the former two being 
noticeably smaller than the latter. Rhenops is over twice as long as these three taxa, though it 
has a proportionately smaller and decidedly elliptical glabella. Trimerus is larger still in overall 
body length, and a still smaller (proportionately) and circular glabella. Unfortunately, none of 
these geometric interpretations are evident from the dendrogram itself or from the information 
output by a cluster analysis (e.g., Table 5). Unlike eigenanalysis-based methods, the results 
of a traditional cluster analysis usually don’t facilitate interpretation of the original data by any 
means other than post hoc comparison. 
 
Of even more concern, however, is the issue of distortion of the data represented by the 
cluster analysis result—the dendrogram. Because of the rules used to create the clustering 
history and dendrogram important information about the structure of similarities among taxa is 
lost. Figure 1 implies that the distance between Cheirurus and Acaste is the same as the 
distance between Cheirurus and Phacops. This is not the case (se Table 2). Indeed, 
Cheirurus is almost twice as close (= similar) to Phacops as to Acaste. By the same token, 
Rhenops appears to be just as similar to Cheirurus as to Acaste and Phacops. This is also 
incorrect. 
 
A measure of the amount of distortion present in the cluster analysis result can be derived by 
comparing the actual similarities to those implied by the dendrogram. For the trilobite data this 
comparison is illustrated in Table 6.  
 
Table 6. Cophenetic distance matrix (see text for discussion). 

 Acaste Cheirurus Phacops Rhenops Trimerus 

Acaste  7.20 6.29 26.08 34.78 
Cheirurus 13.32  7.20 26.08 34.78 
Phacops 6.29 7.20  26.08 34.78 
Rhenops 37.46 26.08 32.18  34.78 
Trimerus 71.39 60.07 66.07 34.78  

 
Here the matrix’s lower diagonal contains the Euclidean distance values (Table 2) observed 
in the raw data of Table 1. The upper diagonal contains those distances implied on the basis 
of the single-linkage dendrogram (Fig. 1). Numerical taxonomists refer to these implied values 
as the cophenetic values. This relation can also be expressed as a scatter diagram (Fig. 2) 
and summarized by calculating the correlation between the observed and implied distance 
values. 
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Figure 2. Distortion induced by a single-linkage cluster analysis of the five-genus example trilobite data. 

Dashed line represents model of perfect correlation. 

 
In the context of a taxonomic cluster analysis this correlation is usually—and misleadingly—
termed the ‘cophenetic correlation coefficient’ despite the fact that it is calculated using the 
standard Pearson product-moment formula. For our example analysis the level of distortion is 
substantial and most pronounced at the higher end of the distance scale—differentially 
affecting those data that are most important for inferring the deep structure of similarity 
relations. 
 
Fortunately (or not as we shall see), single linkage isn’t the only clustering game in town. The 
logical complement to single linkage is complete linkage or furthest neighbour linkage in 
which links are set at the level of the furthest or most dissimilar comparisons. Table 7 shows 
the linkage history for a furthest neighbour analysis of the example trilobite data. Note that the 
first two genera (Acaste and Phacops) join together at the same distance as before (6.29). 
This is because there is only one similarity value involved. After this, though, the order and 
level  of group joining in set by the largest (instead of the smallest) similarity value (e.g., 
Cheirurus joins the Acaste-Phacops group at a distance of 13.32 instead of 7.20 (see Table 
2). 
 

Table 7. Cluster formation sequence using the complete-linkage 
approach. Abbreviations as in Table 5. 

Distance Grouping History 

0.00 A,C,P,R.T 

6.29 (A,P),C,R,T 
13.32 (A,P,C),R,T 
34.78 (A,P,C),(R,T) 
71.39 (A,P,C,R,T) 

 
 
The corresponding dendrogram and cophenetic correlation analysis are provided in Figure 3. 
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Figure 3. Results of a complete-linkage cluster analysis of the example trilobite data. A. Complete-
linkage dendrogram. B. Associated cophenetic correlation scatterplot. Compare with figures 1 and 2. 

 
Note the change in the structure of apparent distance relations among these taxa. Under 
complete linkage Rhenops and Trimerus are seen as forming a locus of similarity of their 
own, though as before, whether this substructure becomes part of the interpretation depends 
on where the phenon line for group recognition is located. If we use the same criterion as for 
the single-linkage analysis the Rhenops-Trimerus cluster would be recognized. Unfortunately, 
the level of distortion for this analysis is even higher than for the single linkage example with 
the greatest distortions, once again, occurring at the deeper levels of the hierarchy. 
 
In order to overcome the obvious limitations of single-linkage and complete-linkage cluster 
analysis approaches a variety of alternative agglomerative procedures have been developed. 
One of the most popular among numerical taxonomists (and paleontologists) has been 
unweighted pair-group mean averaging (UPGMA). In most instances UPGMA maximizes the 
cophenetic correlation coefficient of a cluster analysis and so produces results with minimum 
levels of distortion (Farris 1969; Sokal and Rohlf 1970). The UPGMA approach does this by 
attempting to use a greater proportion of the information present in the similarity matrix. Let’s 
work through the procedure as applied to the five-genus trilobite example. 
 
Table 8. shows the linkage history for a UPGMA analysis. 
 

Table 8. Cluster formation sequence using the UPGMA approach. 
Abbreviations as in Table 5. 

Distance Grouping History 

0.00 A,C,P,R.T 
6.29 (A,P),C,R,T 
10.26 (A,P,C),R,T 
31.91 (A,P,C,R),T 

58.08 (A,P,C,R,T) 

 
 
As before, five groups exist at the 0.00 distance level. Also as before, the shortest distance 
(greatest similarity) exists between Acaste and Phacops at the 6.29 level. Thus, during the 
first round of analysis these two genera join to form a group. Cheirurus exhibits the next 
smallest differences, both with Acaste and Phacops (both now members of the same group). 
However, the level at which Cheirurus joins this group is now set to the average of its 
distances-based similarity with both members of the group (= [7.20+13.32]/2, or 10.26). In 
other words, the UMPGA procedure attempts to ‘split the difference’ between these 
discrepant levels of similarity and so estimate the level of similarity between Cheirurus and 
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the Acaste-Phacops group in as unbiased a manner as possible. Rhenops is next up, 
exhibiting a distance of 32.18 with Phacops. But in order to estimate its level of similarity with 
the Acaste-Phacops-Cheirurus group we average its similarity with all three of these taxa 
(=[37.46+26.08+32.18]/3, or 31.91). Finally, Trimerus is added to the group at its average 
distance to the other four genera (=[71.39+60.07+66.07+34.78]/4, or 58.08). The dendrogram 
determined form the UPGMA clustering history and associated cophenetic correlation plot are 
shown in Figure 4. 
 
 

 

Figure 4. Results of a UPGMA cluster analysis of the example trilobite data. A. UPGMA dendrogram. 

B. Associated cophenetic correlation scatterplot. Compare with figures 1, 2 and 3. 

 
 
The distortion resulting from the analysis is still on the large side (r = 0.910), but has been 
improved. Perhaps more importantly in terms of estimating the overall structure of the matrix 
and the deep structure of the cluster hierarchy, this distortion is now spread evenly across the 
entire range of distance values. Again, we can locate the phenon line at the level of the 
greatest morphological gap in which case two groups are identified. But note even though the 
pattern of relations between the single-linkage and UPGMA dendrograms (figs 1 and 4A 
respectively) are identical placement of the phenon line according to the morphological gap 
criterion yields different answers. If we changed the phenon-line location rule (e.g., first long 
branch) the group-recognition result would be identical. Which of these rules is ‘best’? Both 
have their advantages and disadvantages. It is not clear which location rule should be used in 
this case. 
 
A UPGMA analysis of the entire trilobite dataset (Table 9) is presented in Figure 5. This 
problem is a bit more realistic in size, though still not too large to trace detailed links between 
the dendrogram and original data. 
 

Table 9. Trilobite data.     

 Body Glabella Glabella 

Genus Length (mm) Length (mm) Width (mm) 

Acaste 23.14 3.50 3.77 

Balizoma 14.32 3.97 4.08 

Calymene 51.69 10.91 10.72 

Ceraurus 21.15 4.90 4.69 

Cheirurus 31.74 9.33 12.11 

Cybantyx 36.81 11.35 10.10 
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Cybeloides 25.13 6.39 6.81 

Dalmanites 32.93 8.46 6.08 

Deiphon 21.81 6.92 9.01 

Ormathops 13.88 5.03 4.34 

Phacopidina 21.43 7.03 6.79 

Phacops 27.23 5.30 8.19 

Placoparia 38.15 9.40 8.71 

Pricyclopyge 40.11 14.98 12.98 

Ptychoparia 62.17 12.25 8.71 

Rhenops 55.94 19.00 13.10 

Sphaerexochus 23.31 3.84 4.60 

Toxochasmops 46.12 8.15 11.42 

Trimerus 89.43 23.18 21.52 

Zacanthoides 47.89 13.56 11.78 

Minimum 13.88 3.50 3.77 

Maximum 89.43 23.18 21.52 

Range 75.55 19.68 17.75 

Mean 36.22 9.37 8.98 

Variance 346.89 27.33 18.27 

 
 

 

Figure 5. UPGMA dendrogram for the trilobite dataset. 

 
 
The UPGMA dendrogram for these data shows a profound difference between Trimerus and 
the rest of the genera. This is clearly a reflection of the larger size of the Trimerus specimen. 
If the data had been standardized this difference would not have been as apparent. 
 
Again number of groups recognized is determined by where we set the phenon line. If we 
look for natural breaks in the dendrogram (= morphological gaps), and ignore the profound 
size-related gap between Trimerus and the other genera we could most objectively identify 
two additional groups (see dashed line on Fig. 5). This distinguishes Calymeme, 
Zacanthoides, Toxochasmops, Rhenops, and Ptychoparia from the remaining genera. But 
note how I’ve changed the location rule again. If I apply either the greatest morphological gap 
rule or first long gap rules (see above) only two groups are identified. 
 
Inspection of Table 9 shows these genera are united in having body lengths in the range of 
45-65 mm. The Trimerus specimen has a much greater body length and all the rest exhibit 
body lengths much less than 45 mm. So, the deep structure of the UPGMA dendrogram 
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appears to primarily reflect body length whereas the higher-level structure reflects differences 
between relative glabella size and glabella shape. As you can see, for small numbers of taxa 
and/or small numbers of variables, dendrograms can be interpreted in ways that tell us 
something meaningful about the data used in their construction. This inspection-based 
approach becomes much less practical for dendrograms containing large numbers of objects 
and/or large numbers of variables. For those datasets such clean and compelling 
interpretations are rare. 
 
Since there are so many different agglomerative hierarchical clustering methods—not to 
mention similarity-dissimilarity-association indices—it is natural to ask how stable any 
particular result is. The most straight-forward way of approaching this issue is to compare the 
results yielded by different cluster analysis approaches. Biologists have tended to prefer 
averaging approaches because these address the issue of similarity matrix distortion. 
Statisticians have largely focused on other issues, notably ’continuity’ which is a shorthand 
way of saying that ‘small changes in the data should result in small changes in the 
dendrogram’. Under this criterion single-linkage approaches usually perform better than 
averaging approaches. Figure 6 shows the result of the single-linkage analysis of the Table 9 
data. 
 

 

Figure 6. Single-linkage dendrogram for the trilobite dataset. 

 
 
Obviously this is quite a different and more complex answer than was obtained by UPGMA 
analysis. Or is it? In many cases the top-level groups are the same, they’ve just been 
reordered. Acaste still links to Sphaerexochus and these two link to Ceraurus. But now this 
group is located in the centre of the dendrogram instead of on the left side. Since the order in 
which groups are presented has no significance, both the single-linkage and UPGMA patterns 
are equivalent for these taxa, though the UPGMA analysis links these taxa together at a lower 
level. This is the expected effect of averaging. The same can be said for the Placoparia – 
Dalamanties, Ormathops – Balizoma, and Zacanthoides – Toxochasmops groups.  
 
Where these two dendrograms differ is in the manner in which the top-level groups are linked 
together. In the UPGMA analysis Rhenops and Ptychoparia are joined with the Zacanthoides 
group before this group joins the combined Acaste-Placoparia group. In the single-linkage 
dendrogram Rhenops and Ptychoparia chain together to link Trimerus to the other genera. 
Trimerus, of course, is the odd genus out in both analyses because of its large body length. 
What it all boils down to is a difference in the placement Rhenops and Ptychoparia. But this 
difference matters in terms of the interpretation. The UPGMA solution indicates that, if we 
accept Trimerus as a ‘group’, at least two other groups—possibly three—are present in the 
data. The single-linkage result suggests there is only one. 
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Which solution is correct? Strictly speaking, they both are in the sense that both are accurate 
and internally consistent representations of the structure of the distance matrix. They differ in 
the aspects of that structure they emphasize. Given the radical difference between the deep 
structure of the two dendrograms, the most well-supported generalized conclusion is that, for 
these trilobite data, which aspect of the distance matrix structure the analyst ends up 
emphasizing via their choice of approach makes quite a large difference to the answer 
obtained. Also recall, our trilobite data are very simple. For datasets containing more 
variables and or more objects, the differences between alternative clustering patterns would 
be expected to increase. 
 
There is another approach to cluster analysis that I need to mention briefly: partitioning 
approaches (sometimes referred to as divisive or arbitrary origin methods). These are 
effectively the opposite of agglomerative methods. Instead of beginning with all objects as 
different groups and tracking the history of their agglomeration as the similarity threshold is 
decreased, divisive approaches begin with all objects as constituting a single group and track 
the history of their subdivision as the similarity threshold is increased. Whereas agglomerative 
approaches are ‘top-down’, partitioning approaches are ‘bottom-up’. 
 
The most popular partition clustering approach is the k-means method. Here the user is 
required to specify the number of clusters known or expected to exist at the outset of the 
analysis. These are regarded as cluster seeds and usually initialized using random numbers 
scaled so that the seeds fall within the range of the observed data. During the first iteration 
the similarity between all objects and the seeds is calculated and the object most similar to 
each seed associated with it to form an initial group. The centroid between each seed group 
is then calculated and these centroids designated as new seeds. The process then repeats 
with the next most similar objects joining the seed groups and so on until all objects have 
joined a group. At higher levels in the analysis group joining is controlled by minimization of a 
group-level descriptor such as the trace of the group’s similarity matrix, that matrix’s 

determinant, or the Wilk’s ! statistic. Over the course of the iterations the seeds rapidly shift 

to the true centres of the emerging group clusters since the biasing effect of the artificial 
seeds diminishes with each iteration. A table of the three-group k-means solution for the 

entire trilobite dataset using the Wilk’s ! criterion as the clustering statistic is presented in 

Table 10. 
 
 

Table 10: Three-group k-means solution (Wilks’ ! criterion). 

Group 1 Group 2 Group 3 

Acaste Calymene Ptychoparia 
Balizoma Cheirurus Rhenops 
Ceraurus Cybantyx Trimerus 

Cybeloides Dalmanites  

Deiphon Placoparia  
Ormathops Pricyclopyge  

Phacopidina Toxochasmops  
Phacops Zacanthoides  

Sphaerexochus   

 
 
Once again, note how different this result is from the UPGMA and single linkage 
dendrograms. The advantage of the k-means approach is that more specific grouping 
hypotheses can be evaluated and that the overall procedure can be performed much more 
quickly than agglomerative approaches, though given the speed of modern desktop 
computers this feature only matters for very large clustering problems. The primary 
disadvantage is that the k-means approach tends to produce suboptimal results owing to 
idiosyncrasies in the random placement of the original seeds. This can be overcome to some 
extent either by using actual objects as seeds, enhancing the specificity of the original 
hypothesis, but also requiring more be known about the problem at hand than is often the 
case. Another strategy is to test the result’s stability by performing the analysis multiple times 
using different starting seed values and comparing those results to the original for 
consistency, though this compromises the time-saving advantage. 
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So, what can we say about cluster analysis? Some degree of procedural variation exists for 
all the methods we’ve discussed to date. Usually these variants have focused on the manner 
in which the data are prepared (e.g., unstandardized, standardized, transformed) and type of 
similarity matrix used to quantify relations between variables and/or objects. However, once 
these decisions have been made, regression analysis, principal components/coordinates 
analysis, factor analysis, correspondence analysis, partial least squares analysis, and 
discriminant analysis all settle down to the application of standardized procedures (e.g., 
mostly forms of least squares analysis) whose statistical characteristics are well known. 
Cluster analysis differs because, in addition to the data type and similarity index variants, 
broad variation exists in the procedures used for undertaking the data analysis.  
 
In addition, the statistical characteristics of these procedural variants are, by and large, not 
well known. This makes selection of the appropriate procedure for any particular dataset and 
data analysis situation much more difficult. Once a result is obtained, its interpretation is also 
complicated by the fact there is no widely agreed method whereby the phenon/cut line can be 
placed in agglomerative dendrograms, and by the instability of partition approach results. 
Moreover, the results of a cluster analysis do not lend themselves to efficient and nuanced 
interpretation in terms of the original variables in the manner in which eigenvector-based 
methods do.  
 
Last, but by no means least, most cluster analysis methods fit a hierarchical model of inter-
object similarity to the data even though there is nothing inherent in the structure of most 
similarity matrices that implies such a structure. Eigenvector-based methods also represent 
the structure of similarity matrices, but do not express that structure in terms of a hierarchy. 
Cluster analysis methods tend to adopt this approach because it prevents objects from being 
assigned to more than a single group. The upside of this is that, provided your data 
adequately capture the hierarchical structure you suspect is present, and provided the 
hierarchical structure is a clear and dominant feature of those data, cluster analysis will likely 
find it. The downside is that cluster analysis will find a visually compelling hierarchy in any 
dataset regardless of whether the hierarchical signal is actually there—even in random data 
(Fig. 7). 
 

Figure 7. Quantitative analysis of a 20 x 3 table of random numbers. A. principal coordinates analysis 
result. B. Single-linkage cluster analysis result (distance matrix). Note that by forcing these random data 
to be represented by a hierarchical model the cluster analysis dendrogram displays much more apparent 
structure than the non-hierarchical PCoord ordination plot. While this random dendrogram differs from 
previous data-based patterns in the number of long terminal branches, this will not always be the case, 
especially for small datasets. Also, because of the statistical properties of eigenanalysis it is easier to 
test the PCoord result for the null hypothesis of random variation than it is to test the cluster analysis 

result. 
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I hope I haven’t been too hard on cluster analysis. Like all data analysis methods, it has its 
place and can be very helpful when applied intelligently and with due caution. In this context 
the reader is well advised to remember that Cormack’s (1971) observation about cluster 
analysis—that it is not a satisfactory alternative to clear thinking—actually extends to all 
numerical data analysis procedures.  
 
There was a time when it was hard to page through an issue of the top half dozen 
systematics and/or palaeontology journals and not see a dendrogram. Not true now. Indeed, 
I’d say eigenvector-based methods are now more widely used by palaeontologists for routine 
data analysis that clustering methods. Regardless, cluster analysis lives on in the 
phylogenetics literature in the guise of numerical cladistics which was derived directly from 
the cluster analysis procedures developed by the phenetic school of numerical taxonomy (see 
Sokal and Sneath 1963; Sneath and Sokal 1973). Indeed, these books remain two of the 
most comprehensive treatments of cluster analysis, especially for biologists and 
paleontologists. Other, more recent references that focus on statistical issues, but are 
readable by non-mathematicians, include Kauffman and Rousseeuw (2005) and Fielding 
(2007).  
 
In terms of computer programmes, cluster analysis is such a long-standing and popular 
technique that it is rare to find a commercial multivariate statistical package that doesn’t 
include it in some form. These range from inexpensive plug-ins for MS-Excel (e.g., UNISTAT, 
XL-STAT, StatistiXL) to sophisticated stand-alone packages. A variety of older books on 
statistical analysis also come with cluster analysis software (e.g.,Davis,1981; Backer 1995; 
usually for DOS operating systems). As a last—or maybe as a first—resort, there are a large 
number of freeware and shareware cluster analysis applications available for download from 
the Internet. 
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Don’t forget the Palaeo-math 101 web page, now at a new home at:  
http://www.palass.org/modules.php?name=palaeo_math&page=1 


