
Palaeo-Math 101
Form & Shape Models

There’s no getting around it. Some of the material covered in the last two columns was difficult. 
If you’re feeling a bit lost at the moment it’s perfectly understandable. But don’t despair. The 
more you use Procrustes superposition and Procrustes principal component analysis (PCA), the 
more familiar it will  become. More importantly, the easier it will be to design analyses and 
interpret the results. So, to give you a bit of a break before we dive into the really hard stuff 
we’re going to spend this column equipping you with a conceptually simple but highly useful tool 
that, when applied correctly, will  amaze your friends and make it much easier for you to interpret 
the results of a Procrustes PCA analysis. In addition, gaining an understanding of this tool  will 
serve to illustrate how much of a practical advance geometric morphometrics is over the older 
multivariate morphometric  approach, as well as illustrating important aspects of the conceptual 
roots of multivariate data analysis in general and geometric morphometrics in particular. All this 
will be yours once you understand heuristic PCA models.

Recall  that PCA is really a form of multivariate linear regression through a space defined by the 
original measurements (= variables) taken or observations made on the sample. The number of 
regression lines produced by PCA is equal to the number of variables or number of specimens 
present in the dataset, whichever is smaller. These regression lines are aligned with the major 
dimensions of covariation among the variables with the constraint that they are (normally) 
oriented at right angles to each other. As such, PCA lines can be used to construct an 
alternative data display space within which similarity relations among the objects comprising the 
sample can be visualized. These visualizations can then be used to test hypotheses about the 
nature of the observed variation. In effect, this means that the PCA space is a simple rotation 
and shearing of the space formed by the original variable axes (Fig. 1). If the covariance matrix 
is used as the basis for the PCA the original scaling relations among the variables is preserved 
(Fig. 1B). If the correlation matrix is used the original variables scaling relations are 
standardized so that each variable contributes an equal amount of variance to the result. This 
means the ordination space of a correlation-based PCA has, in addition to being rotated and 
sheared with respect to the original variable space, has also been compressed or expanded in 
certain dimensions (Fig. 1C).

Comparing the scatterplots of the PCA scores in figures 1B and 1C to the raw data in Figure 1A, 
it’s easy to see the regression-like nature of PCA. The equations of the PC axes relate the 
original variables to the new PC axes and are used to project the original  data points into the 
PC ordination space. If you understand the PCA procedure you already know these same 
equations can be used to project any combination of values for the variables analyzed into the 
PCA space. But what isn’t as widely appreciated as it should be is that these same equations 
can also be used to solve the inverse problem of projecting coordinates from the PC ordination 
back into the space of the original variables.

At this point you’re probably saying, ‘OK, so you can use the PC axis equations to go both 
ways. I understand why I want to get my data into the PC ordination space. But I don’t quite see 
why I’d ever want to return to the space of the original variables. After all, the PC ordination 
space is a better space in which to represent and study relations between the objects in the 

Figure 1. Comparison of raw (A) and PCA-transformed plots of the trilobite glabellar length and width data for 
covariance-based (B) and correlation based (C) solutions. The thin horizontal and vertical lines in (A) represent the 
traces of morphometric axes in the space of the original variables whose transformed orientation is shown in the PCA 
score scatterplots. These provide an indication of how the transformed PCA spaces differ from the space of the 
original variables. Note that the angle between these original-variable axis lines in B and C has been artificially 
accentuated due to differences in the scaling of the PC-1 and PC-2 axes. See text for discussion.



sample, right?’ The answer to this question is, for the most part, yes; but there are some 
aspects of the variation problem that are more naturally and compellingly assessed in the space 
of the original variables. The most important of these aspects is the interpretation of the PC 
axes and the PC ordination space itself.

In order to illustrate the problem let’s take a close look at the PCA solution for the simple, 
trilobite glabellar dataset illustrated in Figure 1: two variables, both log10-transformed. For this 
discussion we’ll focus on the covariance-based result (Fig. 1B) as there’s no obvious reason 
why we would not wish to take differences in the scaling of the variables into consideration. By 
log-transforming the variables we’ve already put them into a form in which differences between 
the variables’ scales have been minimized in a way that still  allows us to recover the original 
scalings any time we wish. The equations of these axes are, as follows.

PC1 = 0.755 x1 + 0.655 x2 (18.1)

PC2 = - 0.655 x1 + 0.755 x2 (18.2)

In these expressions x1 refers to log10 glabellar length and x2 refers to log10 glabellar width.

The loading coefficients shown in equations 18.1 and 18.2 form the matrix we use to calculate 
the scores of the original variables in the new covariance-optimized PC space. A quick 
inspection of the ordination we achieved for these data (Fig. 1B) indicates that a variety of 
interesting sub-groupings appear to exist, at least for the individuals included in our trilobite 
dataset. Along the PC-1 axis (which represents over 95 percent of the form variance1  in our 
sample) three subgroups seem to be present. Acaste, Balizoma, Ceraurus, and Sphaerexochus 
appear to form a unified group at the low end of the axis, Trimerus appears to be an outlier at 
the high end, and the remaining genera form a complex group in between. Along the PC-2 axis, 
Dalmanites, Ptychoparia and Rhenops for a subgroup at the low end, Cheirurus, Deiphon, 
Phacops, and Toxochasmops form a group at the high end, and the remaining genera form 
another complex group in between. Taken together, it appears as though glabellar variation in 
our sample is organized into five broad categories or classes, as shown in Figure 2.

Whether these individuals are truly representative of their genera, and whether these groups 
would remain if more individuals were included in the sample, is doubtful. But that’s not the point 
I’m after with this example. Let’s simply accept these provisional geometric subdivisions for the 
sake of argument. 

Figure 2. Covariance-based PCA of the log10-transformed trilobite glabellar 
data with apparent form groups labeled by symbol colour.
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1 Form is represented in a morphometric dataset when size information is embedded in the data. Raw 
interlandmark distances and non-superposed landmark coordinate datasets express form. Shape is the 
information remaining in a dataset once variation due to differences in object position, rotation, and size 
have been standardized, usually through Procrustes superposition.



If all  we want to do is get a quick and dirty answer to the question of whether glabellar form is 
distributed continuously and discontinuously in our sample we could conceivably stop here. The 
answer is clearly the latter. But that answer more-or less begs the further question ‘What does 
glabellar variation in the sample look like?’. I’d like to think any competent data analyst would be 
as interested in providing an answer to this further question as they are in answering the original 
variation-mode question. But when we try to interpret even this simple PCA space we run into 
problems. 

In terms of the standard approach to PCA analysis, the only information we have about the 
character of variation in this PC space are equations 18.1 and 18.2. Even though there are only 
two numbers to keep track of per axis it’s surprisingly difficult to construct a comprehensive and 
accurate picture of what the glabella of these groupings looks like—much less confirming that 
the result is a reasonable summary of reality—just by staring at them. What we can say is that 
variation along PC-1 is strongly size controlled with a subtle component of relative elongation as 
one moves up the PC-1 axis. Along PC-2 the glabellar groups change from being relatively long 
and narrow (the Dalmanites, Ptychoparia and Rhenops group) to short and wide (the Cheirurus, 
Deiphon, Phacops, and Toxochasmops group). But note that the amount of form variation 
expressed by PC-2 is so small relative to that expressed by PC-1 its uncertain whether we 
would expect this pattern to be noticeable to the taxonomist’s eye just from the information 
provided by these numbers. What’s missing in the number-comparison approach, of course, is 
any good way of getting at the inherent geometry of the system. This missing bit isn’t just 
annoying. It severely constrains our ability to interpret the results of even this simple PCA 
analysis in a way that’s biologically meaningful, either to ourselves in the context of our 
investigations or to others in the context of communicating the hard-won results of our analysis.

At this point most morphometricians would launch into a discussion of geometric morphometrics 
and wax eloquent about the advantages of working with landmark coordinates. I’ve already 
done that over the last few columns and I hope you’ve come to appreciate the power of using 
the sorts of graphic representations of form and shape variation we’ve generated up to this 
point. But the fact is, none of the superposition tools or shape coordinate plots we’ve seen up to 
now help us much with the problem of interpreting the ordination space that results from a PCA 
analysis regardless of whether that analysis is performed on linear distances as I’ve done in the 
example above or on Procrustes superimposed shape coordinates. If anything, the problem 
gets worse for shape-coordinate datasets because the number of variables needed to represent 
distances between landmarks in shape coordinates is up to four times larger than the number of 
variables needed to quantify the same distances in a multivariate morphometric  dataset. To 
keep things simple I’m going to stick with the glabellar distance data to develop the 
mathematical concepts we need to translate equations 18.1 and 18.2 into pictures we can 
inspect and compare, just as we’d inspect and compare pictures of organisms. Then I’ll apply 
these same concepts to a landmark dataset to show how this technique improves our ability to 
take advantage of the more geometry-rich information recorded by landmarks in a Procrustes 
PCA analysis.

The basic  tool  we need is a way of solving the inverse projection problem: taking coordinate 
values in the PCA space and projecting them back into the space defined by the original 
variables. It’s actually easier than you might suspect. Expressed in matrix notation the equation 
we use to calculate the PC scores (S) is:

� 

S = XU (18.3)

where X is the original  data matrix of distances or landmark coordinates (in our example the 20 
objects by 2 variables [= glabellar measurements] matrix of raw data each of which has been 
log10-transformed) and U is the 2 x 2 matrix of eigenvector coefficients (see equations 18.1 and 
18.2). In order to perform the back-transform all we need do is pre-multiply the matrix of PC 
scores (S) by the inverse of the eigenvector matrix (U-1).2

� 

X = SU−1 (18.4)
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2 See the Palaeo-Math 101-2 spreadsheet for complete details of these calculations.



Of course, in our trilobite glabella example once the back-transformation calculation has been 
made the original data will be expressed as log10 values of the original measurements. The 
original scale of the distances can be recovered by sequentially raising 10 to the power of 
corresponding value in the X matrix. If we perform this operation correctly for the matrix of PC 
scores we should end up with the values of our original  data. I know, that’s not too interesting. 
However, the magic comes when we realize that we can use the same matrix arithmetic 
operation to calculate the hypothetical ‘raw data’ values for any coordinate position in the PCA 
space. 

In other words, all  the possible coordinate positions in the PC space correspond to hypothetical 
or theoretical  objects in the sense that there is a complete, one-to-one mapping between the 
original variable space and the PC space. Our set of observed data points is simply a subset of 
an infinite mathematical universe of all geometrically possible objects occurring in the space that 
we happen to have found and measured. The U matrix is the door that allows us to travel  from 
the original variable space into the PC space. Similarly, the U-1 matrix is the door that allows us 
to travel in the opposite direction. Most data analysts know how to use the U matrix door. But 
they’ve either forgotten, or were never taught, about the other door. Consequently, if there are 
any interesting coordinate locations in the PCA space we don’t have to simply stare at them, 
scratch our heads, and try to figure out what they might represent by looking at observed points 
that may—or may not—plot in the vicinity of those we’re interested in. We can take any point in 
the PCA space and create a geometric picture of the hypothetical object that exists at that 
location.

Let’s take an obvious example the accuracy of which can be checked independently. Each of 
the groups shown in Figure 2 has an average PC-1 and PC-2 score that can be plotted as a 
specific coordinate position in the PC space. We can calculate this set of group-averaged PC 
scores, back-transform these coordinate locations into the space of the original length and width 
variables, and then compare those estimated values to the group means calculated directly from 
the raw data. The Palaeo-Math 101-2 spreadsheet details all  these calculations. There is, with 
the exception of rounding error, perfect agreement between the average values calculated from 
the raw data and those estimated from the back-transformed group-average coordinates in the 
PC space. But once we have these values we can also create a direct graphic representation of 
the form of the glabellas for each group by drawing an ellipse with the specified mean length 
and width dimensions. Figure 3 shows the reconstructed gross glabellar form based on these 
group mean glabellar lengths and widths.

Now we can see images of the hypothetical forms lying at the group centroid locations. As a 
result, the differences between groups have been made clear. The glabellas of the groups 
arrayed along the PC-1 axis (red, green-blue-yellow, magenta) are distinguished primarily by 
size. This is, of course, signalled by the fact that both the PC-1 eigenvector coefficients are 
positive. But the value of the reconstructions is that now both analysts and readers are provided 
with a direct visual impression as to the magnitude of the size differences. Similarly, the 
glabellas of the groups arrayed along the PC-2 axis (yellow, red-blue-magenta, green) are 

Figure 3. Reconstructed group-mean trilobite glabellar forms based on 
length and width measurements. Symbol colour codes as in Figure 2. See 
text for group membership.
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distinguished primarily by shape. The glabellar width is much shorter than its length for the 
yellow group, subequal  to the length for the red-blue-magenta group, and much longer than the 
length for the green group. This agrees with our gross interpretation of equations 18.1 and 18.2. 
But for those not used to interpreting such data geometrically getting a sense of the form/shape 
lying behind the numbers is very difficult. By using this simple back-transformation method a 
direct and perfectly accurate visual representation of the geometric meaning of these equations 
can be created. These simple mathematical models of the underlying geometry can now be 
used to guide interpretation and facilitate communication in a manner much more accessible to 
most palaeontologists than visual inspection of the matrix equations themselves.

Since we’ve developed the method and proved it works, let’s use it to explore this simple PC 
space. One common challenge in interpreting PC ordinations is getting an accurate and 
complete understanding of exactly what the PC axes represent. Note that while the models we 
constructed for the group means are approximately aligned with the PC axes, they are not 
precisely aligned with them. There is also a question about which axes we’re talking about. 
Since the space occupied by the glabellar data in the PC space is far away from the origin of the 
coordinate system it makes little sense to model forms/shapes along the system axes sensu 
stricto. Rather, what we really want to know is what shape variation in the direction of the PC 
axes, but within the region of the theoretical  form space occupied by our data, looks like. This 
effectively focuses our exploration on the region containing the mean form in a manner wholly 
consistent with geometric morphometric conventions. 

Table 1 shows the coordinate values and associated form models along glabellar form PC-1 and 
PC-2 centred on the mean form (coordinates: 1.284, 0.088).

Table 1. Form models for the glabellar principal component axes. Coordinates (= PC scores) 
used to construct the model are given below each graphic.
Table 1. Form models for the glabellar principal component axes. Coordinates (= PC scores) 
used to construct the model are given below each graphic.
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used to construct the model are given below each graphic.
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Table 1. Form models for the glabellar principal component axes. Coordinates (= PC scores) 
used to construct the model are given below each graphic.

Principal Component 1Principal Component 1Principal Component 1Principal Component 1Principal Component 1

0.784,0.088 1.034,0.088 1.284,0.088 1.534,0.088 1.784,0.088

Principal Component 2Principal Component 2Principal Component 2Principal Component 2Principal Component 2

1.284,-0.012 1.284,0.038 1.284,0.088 1.284,0.138 1.284,0.188

As with the group mean models, there is no information in Table 1 that is not present in Figure 2. 
But it in terms of accessing the information present in that figure to make valid biological 
interpretations of the PCA result it is difficult to think of more useful  technique than the 
calculation, plotting, inspection, and comparison of heuristic form/shape models. In this example 
note the particular clarity with which the dual  nature of PC-1 has been shown. The standard (but 
for the most part erroneous) interpretation of the first principal component of a set of distance 
data is that it represents size. The form models calculated for this axis do differ in size, with 
small glabellas projecting low on the axis and large glabellas projecting high. But in addition to 
this there is a distinct pattern of size-independent glabellar shape variation that is also being 
expressed along PC-1. For this dataset small glabellas exhibit a sight but noticeable tendency 
for the glabellar width to be greater than the glabellar length whereas large glabella exhibit the 
opposite relative length-width relation. Although the difference in the rates of change in glabellar 
length and width along PC-1 are clear in equation 18.1, the shape-state of the space occupied 
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by the sample cannot be inferred from the information in equations 18.1 and 18.2 alone, which 
is all most analysts are taught to use in making an interpretation of PCA axes. By translating 
selected locations within the PC coordinate space back into their equivalents within the original 
variable space, and then using those reconstructed values to devise a graphic representation of 
the distribution of (hypothetical) shapes in the space, a much more complete and meaningful 
interpretation of the set of abstract PC axis can be made quickly, easily, and in a manner that 
invites further exploration. As shown in Figure 4, any location along any trajectory through the 
PC space can be represented by a theoretical model of form (or shape) and used to interpret 
the PCA result. Moreover, this general  approach can be applied to any eigenanlysis-based data 
analysis technique (e.g., factor analysis, principal coordinates analysis, canonical variates 
analysis, partial least-squares analysis, etc.).

I’ve purposefully introduced the concept of heuristic shape modelling using a simple dataset of 
inter-semilandmark distances to show that such an approach can be applied to any dataset 
susceptible to PCA analysis. This is contrary to the published assertions of many adherents to 
the geometric  morphometric  paradigm who often imply that only landmark data can be modelled 
in ways that inform biological interpretations. As a matter of fact there is an extensive and 
somewhat neglected literature on the graphic  representation of multivariate data analysis results 
(see Everitt 1978, Tufte 1983, Cleveland 1985, Myatt & Johnson 2009). Curiously though, I’ve 
yet to come across the straight-forward and computationally compact back-transformation 
method for modelling multivariate results I’ve described above. 

Naturally, model-based approaches are relatively easy to devise for structures whose shape is 
regular—at least in gross aspect—and lends itself to characterization by simple geometric forms 
or form descriptors. With a little creativity though, even datasets composed of variables that 
have no geometric  relation to one another can often benefit from the model-based approach. 
This point having been made, the data types that have come to be associated with geometric 
morphometrics are, perhaps uniquely, well-suited to this modelling approach. As a last example 
I’ll apply the back-transformation method to a trilobite cranidial landmark dataset (Fig. 5) to 
show how this procedure can by applied in the context of a Procrustes PCA analysis.

Figure 4. Distribution of trilobite glabellar forms within the space of the two principal 
component (PC) axes superimposed over a set of heuristic form models illustrating 
the underlying geometry being expressed by the PC ordination space.
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Only 18 of the 20 trilobite images could be used for the cranidial analysis as two genera lack the 
eyes necessary for location of landmarks 3 and 9. Procrustes superimposition of these 10 
landmarks across the specimens representing these 18 genera, along with the sample mean 
shape, is shown in Figure 6.

A Procrustes PCA analysis of these shape coordinate data yields 17 eigenvectors with non-zero 
lengths. This result is consistent with expectations of the removal  of translation, scale, and 
rotation information from the raw landmark coordinate values. Of this shape-vector set the first 
three vectors represent more than 75 percent of the observed shape variation. The distribution 
of the 18 trilobite specimens within the ordination space formed by these three shape axes is 
shown in Figure 7.

Figure 5. Landmarks used to quantify shape variation in the trilobite cranidium. Scale bar = 7.87 
mm. 1: anterior glabellar mid-line terminus. 2,10: intersection of the lateral anterior glabellar margins 
with the pre-glabellar field. 3,9: eye centroids. 4,9: latero-posterior librigenal margins. 5,7: posterior 
lateral galbellar termini. 6: posterior glabellar mid-line terminus. 

Figure 6. Procrustes superposition of 10 cranidial landmarks (see Fig. 5) for 18 
specimens. Black symbols mark position of mean shape landmark coordinates.
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Unlike the previous glabellar form analysis, there are no obvious subsidiary groupings of taxa 
within the cranidial  data used to construct this PCA ordination space. Therefore, it makes no 
sense to calculate shape models for arbitrary groupings of genera. But there is always a need to 
gain a detailed geometric understanding of the character of the shape space itself. Visual 
inspection of the table of shape coordinate loadings on these principal component is an option. 
This information is provided in Table 2.

Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.Table 2. Variable (= shape coordinate) loadings for the three Procrustes PC axes shown in Fig. 7.

Shape 
Coordinate PC-1 PC-2 PC-3

Shape 
Coordinate PC-1 PC-2 PC-3

x1 0.038 -0.030 -0.018 x6 -0.047 0.036 0.015

y1 0.247 0.312 0.153 y6 0.299 0.031 -0.277

x2 0.191 0.396 -0.259 x7 -0.031 -0.169 -0.305

y2 0.129 -0.222 0.290 y7 0.144 -0.229 -0.328

x3 -0.153 -0.004 -0.110 x8 0.168 0.368 0.105

y3 0.082 0.008 0.097 y8 -0.562 0.265 -0.060

x4 -0.187 -0.188 -0.185 x9 0.161 -0.099 0.279

y4 -0.548 0.134 0.006 y9 0.057 -0.010 0.116

x5 -0.014 0.201 0.287 x10 -0.126 -0.511 0.192

y5 0.124 -0.158 -0.363 y10 0.029 -0.131 0.367

Taking the first cranidial principal component as an example of how such an inspection-based 
interpretation would be undertaken, note that the maximum positive and negative loading 
coefficients on the PC-1 axis are associated with variables y6 and y8 respectively with variables 
y1 and y4 also exhibiting notably high and low values. This suggests that, as one moves along 
PC-1 from left to right, the glabella of the cranidia migrates to a more anterior position relative to 
the lateral cranidial margins which, relative to the glabella, migrate to more posterior positions. 
While this interpretation is clear and relatively easy to determine for an experienced analyst, it 
still only provides an understanding of how these two regions of the cranidium are changing 
position relative to one another. It would be considerably more difficult to arrive at—much less 
describe in words—the full set of relative changes in the location of each landmark in the x and 
y directions as the position along the Procrustes PC-1 axis is changed. Compare this rather 
daunting task to the level of geometric insight into the geometry of PC-1 provided via calculation 
of heuristic models for a set of regularly-spaced positions along that axis (Table 3).

Figure 7. Comparison of shape similarity-dissimilarity patterns among landmark data collected from the sample of 
18 trilobite genera in the ordination space formed by the first three Procrustes principal components. Together 
these components express 77.66% of the observed shape variation. Note that the arrangement of plot axes 
facilitates visualization of the distribution in a three-dimensional space.
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Table 3.  Heuristic  trilobite landmark shape models for the first  principal component of  the trilobite 
cranidial landmark data. Values of  the PC-1 coordinate used to construct the model are shown below 
each model graphic.

Table 3.  Heuristic  trilobite landmark shape models for the first  principal component of  the trilobite 
cranidial landmark data. Values of  the PC-1 coordinate used to construct the model are shown below 
each model graphic.
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each model graphic.
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Table 3.  Heuristic  trilobite landmark shape models for the first  principal component of  the trilobite 
cranidial landmark data. Values of  the PC-1 coordinate used to construct the model are shown below 
each model graphic.

-0.204 -0.111 -0.018 0.075 0.169

These models confirm the previous shape transformation interpretations gained through visual 
inspection of the principal  component loading values (Table 2), and also extend these 
interpretations in a manner that is both natural  and intuitive. Using this model  set, and without 
having to inspect any table of numbers or search for high and low values, it can be readily 
appreciated that PC-1 incorporates a moderately strong component of cranidial narrowing in 
addition to lengthening, and that this narrowing is confined to the middle region of the cranidial 
structure (the eye landmarks 3 & 9). 

Visualization of further, and even more subtle, contrasts between these models can be seen if 
one overlays them in a single system such that each landmark position forms a displacement 
track as the position along PC-1 changes (Fig. 8).

Pat Lohmann, who first developed the overlay modelling display technique for the interpretation 
of PC axes, referred to them informally as ‘strobe plots’. Colour coding the landmarks 
associated with each strobe plot based on axis position allows the polarity of each landmark’s 
displacement to be assessed. Also, joining landmarks located on or close to the outline together 
with straight lines provides a sense of shape change in the overall structure. 

Use of these strobe plots allows complete freedom for the analyst to focus on changes in a 
particular landmark in isolation from all  others, on changes landmarks defining or located in a 
particular region, or on changes in the entire landmark ensemble; whatever is needed to 
understand those aspects of shape variation present in the sample relevant to the particular 
systematic or biological question(s) at hand. Finally, for completeness, shape model  sequences 
and strobe plots for the trilobite cranidial PC-2 and PC-3 (Fig. 7) are provided in Table 4 and 
Figure 8. The geometric interpretation of these axes is left as an exercise for the reader.

Figure 8. Overlay (or strobe) plot of the heuristic PC-1 shape models 
shown in Table 2. Landmark position symbol colours denote location of 
the model along the PC-1 axis (as in Table 3). See text for discussion.
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Table 4. Heuristic trilobite landmark shape models  for axes PC-2 and PC-3. Modelled coordinates shown 
below each model.
Table 4. Heuristic trilobite landmark shape models  for axes PC-2 and PC-3. Modelled coordinates shown 
below each model.
Table 4. Heuristic trilobite landmark shape models  for axes PC-2 and PC-3. Modelled coordinates shown 
below each model.
Table 4. Heuristic trilobite landmark shape models  for axes PC-2 and PC-3. Modelled coordinates shown 
below each model.
Table 4. Heuristic trilobite landmark shape models  for axes PC-2 and PC-3. Modelled coordinates shown 
below each model.

Principal Component 2Principal Component 2Principal Component 2Principal Component 2Principal Component 2

-0.218 -0.131 -0.045 0.041 0.128

Principal Component 3Principal Component 3Principal Component 3Principal Component 3Principal Component 3

-0.213 -0.133 -0.053 0.027 0.107

Principal Component 2 Principal Component 3

As this procedure for constructing form/shape models is, for some reason that’s totally 
inexplicable to me, not used routinely in multivariate data analysis, essentially no options in any 
of the standard software packages are available to implement it. Fortunately, the computations 
involved are so simple they can be performed by anyone with access to MS-Excel and the 
eigenvector loading matrices that are the basis for the back-transformation procedure. The 
procedure can also be implemented in any of the standard mathematics software systems (e.g., 
Mathematica, MATLAB, Maple, R) where they can be executed with a single line of macro-
language code. Indeed, production of colour-labelled graphics to express the results of such 
calculations is a far more challenging programming problem than implementation of the 
mathematics that stand behind this simple, but eminently useful, data-analysis tool.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk

Figure 9. Overlay (or strobe) plots of the heuristic shape models shown in Table 4. 
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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