
Palaeo-Math 101
Shape Models II: The Thin Plate Spline

In the last column we developed a simple method for expressing the results of complex, 
multivariate, geometric  morphometric ordinations as form and/or shape models. These were 
configurations of landmark points that exist at discrete coordinate locations in the multivariate 
linear spaces we typically use in geometric  morphometrics to portray similarities and differences 
in the form and/or shape of a sample of specimens. In this column we’re going to develop a 
more mathematically sophisticated way to do the same thing that, at least on a superficial  level, 
makes connection with the ‘deformation grid’ approach to shape modelling developed by D’Arcy 
Thompson in his classic  treatise On Growth and Form (1917, 1942). But before we get into the 
mathematics of this, now conventional, approach to expressing the results of a comparison 
between forms/shapes, and to avoid later confusion regarding the degree to which this 
convention realizes the Thompsonian ideal, it’s worth taking a moment to review what 
Thompsonian transformation grids are and why they were developed.

In his original (1917), and in the later, expanded (1942) edition, Thompson’s goal was to 
“correlate with mathematical  statement and physical  law certain of the simpler outward 
phenomena of organic  growth and structure or form while all the while regarding the fabric of the 
organism, ex hypothesi, as a material and mechanical configuration” (Thompson 1917, p. 17). In 
other words, Thompson sought to “see how, in some cases at least, the forms of living things, 
and of parts of living things, can be explained by physical considerations and to realize that in 
general no organic  forms exist save such as are in conformity with physical  and mathematical 
laws” (ibid, p. 15). Thompson was, of course, aware of evolutionary theory and agreed that 
natural selection operated to sort mechanically efficient from inefficient forms in the manner 
Darwin had suggested. But he bridled at the idea that every aspect of a form is now, and always 
has been, under direct adaptive scrutiny, preferring to believe that some aspects of form owe 
their origin to the physical  forces with which they must contend.1 Thompson saw organic  form 
as a ‘diagram of forces’ from which inferences can be made regarding the nature of the forces 
that act upon it now or that have acted upon it in the past. Using this force metaphor, Thompson 
saw the mathematical  comparison of forms as a way of deducing how these fields of forces 
changed during both ontogenetic and evolutionary history.

Thompson’s proposed method of force-field analysis was to take two simple line drawings of 
species’ bodies or some corresponding structural  element therefrom (e.g., copepod, ungulate 
cannon bone, leaf). For convenience we’ll label  one form as the ‘reference’ and the other as the 
‘target’. In order to better visualize the nature of the geometric  transformation Thompson 
superimposed a rectilinear grid on the reference form. He then worked out simple sets of 
mathematical transformations that would map point location coordinates of the reference into 
topologically corresponding locations on the target. Applying those same mathematical 
transformations to the coordinate locations of the grid vertices Thompson obtained a striking 
image-based summary of the implied geometric transformation (Fig. 1). 

Figure 1. Example Thompsonian transformation grids specifying uniform (upper) and non-uniform (lower) 
transformation functions. For each comparison the reference form is located on the left and the target form 
on the right. Redrawn from Thompson 1917.

1 In this view Thompson perhaps reflects the same level of discomfort with hyperadaptationist arguments 
criticized more recently by Gould and Lewontin (1979), among others.



It is clear from Thompson’s many statements throughout the last chapter of On Growth and 
Form that he regarded the mathematical transformation as pertaining to, and being constrained 
by, all  mathematical  points comprising the line drawing and that he respected the principle that 
biological homology pertained to structures, but not necessarily individual  point locations on 
structures. Rather, it was the configuration of the entire ensemble of mathematical  points —
represented diagrammatically by the superimposed grid — that he looked to in judging whether 
he had devised biologically reasonable formulae for a particular form transformation. Similarly, it 
is clear the only purpose served by the mathematical  grid was to passively express the overall 
geometry of the transformation in the manner of a deformed, map-like coordinate system. 

As illustrated in Figure 1, Thompson used his approach to provide examples of both linear 
(uniform) and non-linear (non-uniform) transformation modes. Like the later ‘relative growth’ 
studies of Otto Snell, Julian Huxley and Georges Teissier (see below), the thing that impressed 
morphologists about Thompson’s transformation grids was the fact that seeming complex form 
changes appeared to be able to be described accurately by simple mathematical 
transformations applied consistently to all point locations over a form. This suggested to many 
at the time that the underlying principles and/or determinants of morphological change might be 
simple when expressed in, or studied using, the language of mathematics. 

While Thompson’s transformation-grid approach resulted in the creation of compelling diagrams
— so much so both his original  set of drawings and many subsequent variations of them have 
been reproduced in countless books on biology and evolution despite the fact that the physical-
force theory these drawings represent is almost never discussed in those same texts — his 
geometric  approach to the analysis of form never caught on during his lifetime. Thompson 
himself provided some guidance regarding how to operationalize his transformation grids, which 
he thought of as a visual tool  akin to a modern-day spatial morphing algorithm. Those 
algorithms subdivide an image into a set of points and then smoothly map a subset of these 
between a reference and target form with their difference displacements informing the 
displacement of intermediate points via simple linear interpolation. For example, it is this linear 
interpolation approach to transformation grid analysis that Thompson used to create his morph-
like model of the complex geometric  transition between Hyracotherium and modern-day Equus 
(Fig. 2).

Figure 2. Thompson’s transformation grid analysis for the transition from the Eocene Hyracotherium skull 
form (A)  to the modern Equus skull form (B). Note the representation of  hypothetical intermediate stages 
of the transformation via linear interpolation (C). From Thompson 1917.

Although Thompson’s original, interpolation-based approach to the realization of transformation 
grids was fine if all  you wanted to do was map one form into another, it was not well  suited to 
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the summarization of geometric information across a larger sample of data. Arguably Huxley 
(1924) and Teissier (1929, see also Snell  1892 and Huxley 1932) were more successful in 
developing an analytic approach to the general problem of form variation than was Thompson. 
But the logistic regression equations used by students of relative growth — or allometry in 
modern parlance — were not used to create graphic  models of form change with anything like 
the visual impact of Thompson’s grids. 

Curiously, this failure to capitalize on the modelling capabilities of regression-based methods 
when treating morphological  data remained in place for a half-century during which time Huxley 
and Teissier’s bivariate regression-based approach to form analysis was extended to the 
multivariate case (via PCA, see Jolicouer and Mosimann 1960) and holistic modelling 
approaches were developed for other aspects of morphological  analysis (see Olson and Miller 
1958). As we have seen in the last column, all  the mathematical  machinery for implementing at 
least some aspects of useful geometric shape modelling was in place by the 1960s. Yet, no new 
developments in this area took hold until  1980s despite a few attempts to  formulate an explicitly 
Thompsonian modelling approach in the form of morphological trend surfaces (Sneath 1967) 
and biorthogonal grids (Bookstein 1978). 

In retrospect there appear to be two reasons for this. The first was that the largest school  of 
morphometrics (multivariate morphometrics) tended to look to the communities of statisticians 
and psychometricians for methodological guidance, neither of which were particularly interested 
in creating morphological models. The second was that, ever since the 1930s, the tradition in 
bivariate and multivariate morphological studies was to analyze pairs or sets of distances 
between landmark locations rather than configurations of Cartesian coordinate locations 
scattered over a sample of forms. Once the power of shape coordinates had been established 
by Bookstein (1986) and the outlines of shape theory had begun to emerge (see Kendall  1984), 
the stage was set to renew the search for an analytic method that could combine the intuitive 
appeal of Thompson’s transformation grids with the equally popular, and far more powerful, 
tools of multivariate morphometrics. The key insight that allowed this new approach to shape 
modelling to be realized was specification of a new spatial metaphor for shape similarity. 

In traditional multivariate analysis the similarity between two objects is quantified by calculating 
the distance between them across all variables. This is fine for a quick-and-dirty summary of 
form differences, but lacks the ability to track varying patterns of size/shape similarity and 
difference in different regions of the forms. In the days when morphometricians characterized 
forms using sets of linear distances between landmarks, this distance-based metaphor seemed 
both natural  and practical. After all, distances are simply magnitudes. There is no information 
about geometry in a list of distance values. Since geometry can’t be reconstructed precisely 
from a table of distance values there wasn’t any point in worrying about shape models. But with 
the move to characterizing forms using the coordinate values of the landmarks themselves — 
and especially the transformation of landmark coordinate values to Procrustes shape coordinate 
values via standardization for position, scale, and rotation — it became possible to represent the 
form and shape similarities or differences between any two objects precisely in a manner that 
retained the fundamental geometry of the landmark configurations.

Figure 3. Stages in the landmark-based comparison between shapes. (A) Cranidial landmark configuration 
for the trilobite genus Acaste. (B) Cranidial landmark configuration for the trilobite genus Calymene. (C) 
Procrustes superposition of  the Acaste (red) and Calymene (green) shape coordinates. (D) Shape 
difference vectors between corresponding reference (red) and target (green) shape coordinate locations. 
See text for discussion.
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Imagine two forms defined by corresponding sets of landmark coordinates. As above, we’ll  call 
one the reference form and the other the target (Fig. 3A-B). Procrustes superposition of these 
landmark sets transforms the forms into shapes and brings corresponding landmarks into 
positions of maximal correspondence (= minimal  sum of squared deviations, Fig. 3C). The 
differences between the reference and target shapes can be visualized as a set of difference 
vectors between the reference and target shapes at each coordinate location (Fig. 3D). Now, 
rather than summing these differences up to produce a statistical  estimate of shape-difference 
as we’d do in traditional multivariate morphometrics, let’s select the reference shape and 
express the difference between it and the target shape as a set of vectors with the same 
displacement as in Fig. 3D, but rotated such that the difference vectors are parallel  to the z-axis 
of a three-dimensional  coordinate system. In this system the z-axis expresses the shape 
difference between the reference and target. The resulting figure (Fig. 4A) expresses the shape 
difference as a set of stalks at each landmark location. Either the reference or the target shape 
can be used as the basal  shape for constructing this sort of shape-difference diagram. Note that 
the geometry of the landmark configuration is retained in this graphic expression of shape 
difference and that we can easily identify which regions of the two shapes are more similar to, or 
more different from, one another.

Figure 4. Shape-difference diagrams between the Acaste (reference) and Calymene (target) cranidial 
landmark configurations. (A) Rotation of  the reference-to-target shape-difference vectors shown in Fig. 3D 
to the z-axis to form a three-dimensional representation of  shape difference. (B) Spline-estimated surface 
of  the shape-displacement data with colors representing regions of  differential curvature. (C) Same spline 
surface as in B, but this time with the surface represented as a deformed rectilinear grid. In all three 
diagrams the reference configuration was used as the basis for the shape-difference graphic.

Although the only information about shape similarity and difference present in the diagram is 
located at the landmark locations, we can nevertheless summarize the general character of the 
shape transformation by fitting a mathematical surface to the ends of the difference vectors. 
Because the differences between the shapes are not the same in all parts of the form 
constrained by landmarks, this surface usually (but not always) has the character of a set of 
folds or warps the tightness or looseness of which typically vary over the landmark set (Fig. 4B). 
These days, through the magic of computer graphics, we can characterize the geometry of 
these folds in many different ways using contour lines or various shading schemes. But in 
simpler, less technology drenched times, the standard way of representing a contorted 
mathematical surface was as a deformed rectilinear grid (Fig. 4C). The resulting diagram 
summarizes the differences between the shapes of any two shapes in a manner that bears a 
strong, but superficial, resemblance to a Thompsonian transformation grid.

The surfaces shown in Figures 4B and 4C are standard parametric  cubic splines. These aren’t 
terribly useful  for summarizing shape difference because they specify elastic deformations in 
which the shape of the underlying mesh, when viewed from the direction of the shape-
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displacement (z) axis, is held constant. This amounts to an isomorphic  projection of the 3D 
mesh onto the x,y plane. Instead, the surface interpolation method of choice among 
morphometricians is an advanced type of polyharmonic spline called a thin plate spline (TPS, 
see Duchon 1976, 1977). The TPS attempts to mimic  the behavior of a defect-free, uniform, and 
infinitely thin metal plate that is bent in the z-direction to conform to the geometry of the shape-
displacement vectors. This metal-plate metaphor is important because, unlike elastic surfaces, 
metal plates bend in ways that minimize the energy required to achieve the bend in all directions 
over the entire plate. In applying this physical metaphor to shape analysis, the TPS represents 
the surface of  minimal bending energy implied by the transformation of one shape into another.

Before we get into the equations for calculating a TPS surface let’s understand what we mean 
by deformation. There are two broad classes of possible geometric deformations. These go by 
various names. Uniform deformations (also called affine or linear) includes all modes of 
deformation in which lines that are parallel prior to the deformation remain parallel after the 
deformation. There are six types of uniform deformations (Fig. 5).

Among these you’ll recognise the deformation modes that are corrected during Procrustes 
superposition. Nevertheless, the compression/dilation and shear modes can be used, or 
combined, to describe aspects of genuine shape change.

As for the ‘other’ category, it’s usually referred to as a non-uniform deformation in the 
morphometric literature, but can also be termed a non-affine or non-linear deformation. These 
are deformations in which lines that are parallel  prior to the deformation are not parallel after the 
deformation. Examples are numerous, but the simplest is the so-called ‘square to kite’ 
deformation (Fig. 6).

Figure 5. Alternative modes of uniform shape deformation.

Figure 6. One simple example of a non-uniform shape deformation.
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Most ‘real-world’ geometric  deformations are combinations of uniform and non-uniform 
deformation modes. This is certainly the case for the deformation implied by the Acaste and 
Calymene shape coordinate sets shown in figures 3 and 4.

With our goal  of representing shape transformation as a thin plate spline in mind, and with an 
appreciation of the fact that this spline is (likely) going to be composed of both uniform and non-
uniform deformation modes, we’re now in a position to begin a (very generalized) discussion of   
TPS mathematics. Since we’re going to be minimizing the hypothetical bending energy in the 
specification of our shape transformation surface, we’re going to need to calculate an index of 
bending energy at each landmark location. This first step toward this is achieved by the 
following equation.

U rij( ) = rij2 ln rij2 (19.1)

Here the value r2ij is the square of the distance between landmarks i and j in the set of shape 
coordinates for the reference configuration and ln is the natural logarithm function (base e). This 
calculation quantifies the relative amount of ‘energy’ required to achieve a bend between all 
pairs of landmarks. The spacing of landmarks represents an important constraint on the spline 
because it is more difficult (= requires more energy) to achieve a bend between closely spaced 
landmarks than between landmarks located at a distance from one another. This distinction will 
have important implications when we discuss principal warps a bit later in this essay series.

Returning to the problem of determining the TPS surface, the various possible modes of 
bending across a set of landmarks are specified by a partitioned matrix (L) whose structure is 
summarized as follows.

L =
P Q
Qt 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(19.2)

The P matrix partition summarizes the distances between landmarks using the U function 
(equation 19.1). 

 

P =

0 U12 U13  U1p

U21 0 U23  U2 p

U31 U32 0  U21

    

Up1 Up2 Up3  0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

(19.3)

                
Note here the subscript p  refers to the total number of landmarks specified in the reference (and 
target) configuration(s). The diagonal of this matrix is occupied by zeros because the distance 
between any landmark and itself is zero. The off-diagonal  U values are calculated using 
equation 19.1. Note that the P the matrix is both square and symmetrical about its diagonal.

The Q matrix summarizes the coordinates of the reference landmark configuration.

 

Q =

1 x1 y1
1 x2 y2
  

1 xp yp

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(19.4)

The Qt matrix is the transpose of the Q matrix. Finally, the 0 matrix is a 3 x 3 matrix of zeros.

6



0 =
0 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(19.5)

Arranging these matrices in the manner indicated by equation 19.2 produces a composite p+3 x 
p+3 square, symmetrical  matrix whose diagonal  elements are all  zeros. Once this matrix has 
been assembled its inverse is calculated (L-1). The L-1 matrix represents the energy required to 
achieve a displacement of the landmarks of the reference configuration (= bending of the 
implied reference TPS surface) in any combination and by any amount.

The overall TPS surface is calculated from the L-1 matrix by padding the matrix of x and y shape 
coordinate values for the target configuration (Xt) out with a 3 x 2 matrix of zeros (Xt+) to give it 
the same number of rows as the L-1 matrix and then multiplying these two matrices together as 
follows.

W = L−1Xt+ (19.6)

This creates the weight matrix (W). We’ll  use the W matrix more in our discussion of partial 
warps and relative warps. But for now all we need to know is that the W matrix can be 
partitioned into two sections. The first p rows represent the weights assigned to the non-uniform 
modes of shape variation and the remaining three rows represent weights assigned to the 
uniform modes of shape variation.

In order to calculate the 2D representation of the 3D TPS surface the following equations are 
used.

zx (x, y) =Wp+1,1 +Wp+2,1x +Wp+3,1y + Wi,1U ri,1 − xi,1( )2 + ri,2 − xi,2( )2⎛
⎝

⎞
⎠

i=1

p

∑ (19.7)

zy (x, y) =Wp+1,2 +Wp+2,2x +Wp+3,2y + Wi,2U ri,1 − xi,1( )2 + ri,2 − xi,2( )2⎛
⎝

⎞
⎠

i=1

p

∑ (19.8)

The values input into these equations (x,y) are the coordinate positions of vertices of grid 
centred over the target shape. The dimensions of this grid, the number of grid cells used in its 
construction, the amount by which the grid extends around the periphery of the target shape 
landmarks all are under the analyst’s control. Once the positions of the TPS vertices have been 
established, the grid is constructed by drawing straight lines between adjacent grid vertices to 
create a deformed, rectilinear grid pattern. By convention, the shape coordinate values of the 
target shape landmarks are usually plotted along with the grid graphic itself as an aid to 
interpretation of the TPS surface.

The bending energy matrix is the upper-left p x p block of L-1 matrix (= Lp-1). This partition is 
used to calculate the non-uniform component of the transformation between the reference 
configuration and target configuration in the Procrustes space. The equation that yields the 
coefficients of the non-uniform aspect of the TPS surface is simply the p x 2 matrix product of 
the target object’s shape-displacement values (Xc) and the p x p bending energy matrix (Lp-1).

TPSnon−uniform = XcLp
−1 (19.9)

This manner of calculating the non-uniform aspect of shape transformation was originally 
published by Bookstein (1989) and has remained stable since then. Unfortunately, the uniform 
component of the shape transformation has had a more tortured history. It is beyond the scope 
of an introductory essay such as this to review that history in detail. The method for estimating 
the uniform component of shape transformation I will present here is taken from Rohlf (1993) 
because it is simple and has been used most often in TPS calculations to date. However, there 
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are other methods (see Bookstein 1991, Bookstein 1996, Rohlf and Bookstein 2003, Zelditch et 
al. 2004).

Under Rohlf’s (1993) approach, and drawing on analogy with the calculation of the bending 
energy matrix, the uniform component of shape transformation is encoded in the upper right p x 
3 block of L-1. This block is referred to by the subscript q, again drawing on analogy with the Q 
matrix in equation 19.4. Thus, the Lq-1 partition of the L-1 matrix is used to calculate the uniform 
aspect of the TPS  as follows.

TPSuniform = XcLq
−1 (19.10)

Now, let’s run the Acaste and Calymene data through these equations and take a look at their 
TPS surfaces. Figure 7 summarizes the contrast between the Acaste  (Fig. 7A) and Calymene 
(Fig. 7B) specimens in terms of the ten landmarks used to quantify cranidial morphology. Both 
of the possible TPS representations are shown, Calymene to Acaste (Fig. 7C) and Acaste to 
Calymene (Fig. 7D). As per morphometric convention, the configuration of the target specimen 
is plotted along with the spline. Note the geometrically reciprocal character of two splines.

Figure 7.  Total TPS spline surfaces for the geometric transformation between Acaste (red) and Calymene 
(green). (A) Basal (non-deformed) grid for Acaste landmark configuration. (B) Basal (non-deformed) grid 
for Calymeme landmark configuration. (C) Thin plate spline surface for the Calymeme-Acaste 
transformation. (D) Thin plate spline surface for the Acaste-Calymeme transformation.

By way of an example, the Acaste-Calymene TPS surface can be further decomposed into 
uniform and non-uniform deformation modes, as shown in Figure 8.
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Figure 8.  Deformational modes of  the Acaste-Calymeme geometric transformation. (A) Uniform (affine) 
TPS surface. (B) Non-uniform (non-affine) TPS surface.

Accordingly, the deformation shown in Figure 7D can be described as a combination of a 
uniform deformation that combines aspects of a clockwise shear, strong anterio-posterior 
compression, and clockwise rotation (Fig. 8A). To this is added a pronounced non-uniform 
deformation centred in the glabella involving a strong element of asymmetrical latero-posterior 
compression with movement of the three anterior landmarks strongly forward relative to the 
remaining landmarks. This relative movement results in elongation of the glabella and anterior 
of the cranidium, lateral  migration of the eyes, and latero-posterior migration of the intersection 
between the crandidium’s the posterior lateral  projection and the posterior lateral margin of the 
glabella (Fig, 8B, see MacLeod 2009, Fig. 5 for landmark definitions).

Thin plate splines for the entire trilobite dataset for which these ten landmarks can be located 
are shown in Figure 9. In these analyses the sample mean shape was used as the reference 
shape. Also provided is the value of the total bending energy specified by each spline surface. 
This number is analogous to the total shape variance and can be used to identify the shapes 
that deviate more (or less) from the reference (= mean) shape than others.

I hope this brief explanation and demonstration of thin plate splines has demystified the topic  for 
you, at least a bit. Thin plate splines are a very attractive way of graphically depicting shape 
changes and, because of that, they are also very seductive. They should be used more widely 
than they are, but they need to be used with caution. 

Because these splines are depicted as surfaces that encompass the landmarks themselves, the 
areas between the landmarks, and even areas outside the region covered by the landmark set, 
there is tendency to make more of the details of the spline’s configuration than is actually 
warranted. It should be remembered that, except for the areas immediately surrounding the 
landmark locations, all other aspects of the spline are artificial  interpolations. While the 
geometry of the spine between the landmarks can identify regions of potential interest (see 
Bookstein’s 2002 method of TPS creases), interpretations involving these inter-landmark 
regions should be made with caution. Ideally once inter-landmark regions of interest have been 
identified, landmarks should (if at all  possible) be placed at or near their location and the 
analysis repeated.
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Figure 9.  Total TPS surfaces for the comparisons between the trilobite sample mean shape (red) and the 
landmark shape configuration for 18 genera from the trilobite dataset. Numbers in parentheses beside 
each genus name are the total bending energies associated with that shape configuration relative to the 
sample mean shape. This value is analogous to the shape variance.

The issue of the robustness of TPS surfaces to changes in the experimental  design should also 
be mentioned. As in any multivariate analysis, any TPS result is only valid for the specimens 
used to calculate it, the landmark set used to quantify morphological  variation, and the reference 
form used as a basis for the spline. Variation in any one of these parameters will  likely result in 
substantial  changes to the spline’s geometry. In other words, the results of a TPS analysis are 
simply mathematical descriptions of the shape comparison the analyst has chosen to make 
between two or more forms; nothing more and nothing less. These descriptions are not 
generalizable in and of themselves. In subsequent columns we’ll learn how to use the TPS 
approach to make general  statements about the character of shape variation in a sample. But 
even with those techniques the instability built into the TPS method of shape representation 
needs to be appreciated. In particular, the selection of the reference shape is, in most cases, a 
critical decision.

Is the thin plate spline the long-sought realization of the Thompsonian transformation grid 
concept?  In some ways it is  and in some ways it isn’t. I suspect Thompson himself would have 
absolutely loved thin plate splines. D’Arcy Thompson was a great believer in the constraints 
materials and physical  processes place on morphological arrangements. The idea that the TPS 
algorithm involves a metaphorical concept of bending energy which is required to be minimized 
by the resulting geometry would have spoken to one of his most deeply held beliefs about the 
organic  world. However, no data or morphological patterns have come to light in the 93 years 
that have elapsed since On Growth and Form’s publication to lend support the idea that 
evolutionary processes operate in such a way as to minimize physical parameters such as 
bending energy. To be sure, organic design cannot exceed the performance limits imposed by 
the materials used to execute the design. This represents an absolute limitation. But 
evolutionary history abounds with examples of structures that are inefficient from a purely 
mechanical point of view. The reason for this this is that mechanical  design is only one of the 
parameters evolutionary processes seek to optimize. 

On a more mundane, algorithmic level, the TPS approach also exhibits significant differences 
with the grids drawn by Thompson and his colleagues, most notably in the sense that 
Thompson’s grids were conceived of as applying to all points on the form, not just those that 
happen to be located by particular landmarks. While TPS technique can be used to visualize 
morphological transformations across and entire form, that transformation is controlled entirely 
by a relatively small number of point locations. Such a severe abstraction of the overall 
morphological signal stands in contrast to Thompson’s original  transformation-grid concept. 
Rather, that concept was, as we will see later, much closer in spirit and practice to the analysis 
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of a continuous series of point locations that specify the complex, but biologically information-
rich geometries of organic forms. Fortunately, the TPS approach can also be applied to these 
data despite the fact that the application of TPS analysis to these data have been rare so far 
because alternatives to TPS-based shape modelling have been available.

A final word about computer programmes for implementing a TPS representation of shape 
difference. The industry standard remains Jim Rohlf’s tpsSplin and tpsRelw packages (http://
life.bio.sunysb.edu/morph/soft-tps.html). Øvind Hammer’s PAST package (http://folk.uio.no/
ohammer/past/) also calculates thin plate splines though his description of the algorithms it 
employs to do so (Hammer and Harper 2006) appears to differ in many ways from the canonical 
descriptions provided by Bookstein (1991), Rohlf (1993) and Zelditch et al. (2004). Other 
packages that can be used to perform TPS analyses include Dave Sheets’ IMP software (http://
www3.canisius.edu/~sheets/morphsoft.html), Paul O’Higgins’ Morphometrika (http://
sites.google.com/site/hymsfme/downloadmorphologica) and Jon Krieger’s Morpho-Tools online 
morphometrics data analysis tools site (http://www.morpho-tools.net/).

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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