
Palaeo-Math 101
The Centre Cannot Hold I: Z-R Fourier Analysis

Likely you were a bit dissatisfied with the Sassia example I closed the last column with. I know I was. At best 
editing an image in order to prevent it from having double, triple, or multiple valued regions seems a last-
ditch compromise born of necessity. At worst it’s a kluge, fit only for those who haven’t thought very deeply 
about the geometric problem and/or unaware of the other mathematically reasonable options. In either case 
this technique — which you still  see covered in some textbooks (e.g., Davis 2002), is far from the elegant 
solution mathematicians constantly strive to attain. Worse still, it only works with a reasonably conservative 
subset of possible shapes. Consider the positively pathological shape characteristic  of the calcareous 
benthic foraminifera Ramulina globulifera (Fig. 1). Obviously, for this shape there are no simple cut planes 
available for us to use to subdivide the image and then reconstruct it in a manner that would prevent the 
occurrence of multi-valued segments.

Figure 1. Shape of  the spinose benthic foraminifer species Ramulina 
globulifera.

The fundamental problem in both the Sassia  and Ramulina outlines is our reliance on some landmark at or 
near the outline’s centroid to supply a fixed point from which to calculate its form or shape function. Actually, 
when you think about it, this whole idea of using a central point as the basis for form/shape function 
calculation has caused us nothing but problems. It’s all  well  and good when we’re dealing with simple, 
regular outlines. But even in those cases the centroid is a calculated point, of no special  status in terms of 
the parts of the form we’re really interested in from a biological point-of-view. Also, as we saw in the last 
column, we can’t even rely on the centroid staying put when it comes to interpolating the outline down to the 
level where it can be described by a reasonable number of harmonic  amplitudes and phase angles. If we 
could just get rid of having to find and then rely on the outline’s centre all  of this geometric analysis of 
outlines business would be much easier. Fortunately, some clever people down the (metaphorical) hall  have 
worked up some procedures that allow us to do precisely that.

Think of the Ramulina outline as a path; a (admittedly tortuous) way of getting from a convenient starting 
point, round the outline and back to the start. This pathway is complicated when looked at in its entirety. But 
it can be simplified if broken into small pieces. 

To draw a practical  analogy, when someone stops you on the street and asks for directions, the route they 
need to take to arrive at their destination could well  be geometrically complex when drawn on a map. Still, 
that complexity can be broken down into a set of very simple sequential  directions. The set of instructions 
you’d likely provide would run something like this.

Go north, down this street until you get to the second stoplight.
Turn right onto Wabash.
Go east on Wabash for three blocks.
Turn left onto Cimarron.
Go north on Cimarron until you come to a Stop sign, two blocks.
Turn left onto Beaumont.
Stay on Beaumont for four blocks and you’re there, it’s on the corner of Beaumont and Eastwood.



Assuming that each city block represents a unit distance — let’s call it a ‘step’ — this set of directions is 
mathematically equivalent to the following.

Take 2 steps.
Turn 90° clockwise.
Take 3 steps.
Turn 90° anticlockwise.
Take 2 steps.
Turn 90° anticlockwise.
Take 4 steps.

This type of street-direction procedure was used by Charles Zahn and Ralph Roskies (1972) to develop a 
way to transform any closed curve no matter how complex into a single-valued, periodic, mathematical 
function that could be decomposed using Fourier analysis.

Figure 2. Steps in calculating the Zahn and Roskies (Z-R) shape function. A.  original set  of 
semilandmark data points placed on the periphery  of  a hypothetical shape. The red landmark 
represents the starting point for digitization.  Ideally  this point should be placed on a topologically 
homologous landmark. Note the uneven interlandmark spacing.  B. Adjustment of  original data (via 
interpolation) to a set of  equally  spaced semilandmark points. Again,  the red landmark represents the 
starting point  for digitization. The inset illustrates the expression of  the shape of  the outline as a 
series of  net angular deviations (see text for discussion). C. the ϕ form of  the Z-R shape function with 
a typical ramp that denotes a closed curve. D.  the ϕ* form of  the Z-R shape function with represents 
the shape residual after removal of the ramp of circularity.

The Zahn and Roskies procedure begins with the collection of a set of x,y coordinates (or x,y,z coordinates 
of a three-dimensional analysis is required, see MacLeod 1999) along an outline or curve of interest (Fig. 
2A). These points need not be equally spaced at the time they are collected and, if you are using a digitizer 
that requires you to place the points on the outline by hand, they won’t be evenly spaced. Regardless, 
provided the set of collected points provides sufficient resolution in the parts of the outline where the bend is 
tight, it is a simple matter to search out and estimate a set of equally spaced points along the sampled 
outline via linear interpolation (Fig. 2B, see the Palaeo-Math 101-2 spreadsheet for an example of these 
calculations).

Once a set of equally spaced semi-landmark coordinates has been estimated, the outline can be regarded 
as an n-sided polygon where n is the number of semilandmark points. Since the distance between each 
point is the same we only need to remember one distance value for the entire outline. This is termed the 
‘steplength’. For curves that have been sampled to the same number of semilandmark points the steplength 
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will  represent the length of the outline. This length will  often be a convenient size metric.1  Size may be 
removed from consideration (and display) by setting the steplength to a unit value (e.g., 1.0) for all  outlines in 
the dataset.

With size quantified and under our control, the shape of the outline can be represented in the ‘street 
direction’ manner alluded to above — as a series of angular turns that need to be executed in order to find 
the location of the next semi-landmark point and which is always exactly one steplength away. 
Mathematically this involves determining the angle between the adjacent sides of the polygon. There are 
many ways to calculate this set of angles, the most common of which is to regard adjacent polygon 
segments as vectors and use the vector dot product to find the angle. 

The first step in this procedure is to calculate the displacements or distances of between adjacent 
semilandmark points in the x and y directions. Since these segments are defined by sets of three 
semilandmark points, (xi-1,yi-1), (xi,yi), and (xi+1,yi+1 see Fig. 2B, inset), the displacements in question are 
calculated as follows.

dx1 = xi ! xi!1
dy1 = yi ! yi!1
dx2 = xi+1 ! xi
dy2 = yi+1 ! yi

(24.1)

Once these displacements have been obtained the dot product can be calculated.
 

ci = ((dx1 !dx2 )+ (dy1 !dy2 )) ((dx1)
2 + (dy1)

2 ) !((dx2 )
2 + (dy2 )

2 ) (24.2)

In order to get the orientation of this angle right the following rules must be applied.

If ci
2 !1.0 si = 0.0

If ci
2 <1.0 si = 1.0 " ci

2
(24.3)

Once ci and si have been calculated they can be used to calculate the angle between adjacent polygon 
segments using the arctangent function.

!i = tan
!1(si ,c2 ) (24.4)

To ensure accuracy this value is estimated using high-precision numerical methods. Finally, in order to take 
advantage of the tangent function’s ability to locate angles in any of the four Cartesian quadrants, the sign of 
the ϕi-value must be adjusted using a vector cross-product test.

If ((dx1 !dy2 )" (dx2 !dy1)) < 0.0, !i = "!i (24.5)

These calculations result in a set of angles —expressed in radians — the cumulative sum of which quantifies 
the net angular change around the perimeter of a shape from the user-chosen sequence starting point. This 
shape function can be expressed in its raw form (ϕ, Fig. 2C) in which the cumulative radian values are used 
to represent the shape, or as a normalized shape function that expresses the degree and location of 
deviation from strict circularity (ϕ*, Fig. 2D). In the case of the latter the negative ramp of the former is 
removed by subtracting a cumulative constant term corresponding to the radian-equivalent value of 360° 
(6.2832) divided by number of steps used to subdivide the outline. 
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1 If the curve of interest is the outline of the entire specimens the steplength may be used as an index of size. However, if 
the curve of interest represents some spatially restricted feature of the specimen the steplength may represent a biased 
size index if interpreted in a naïve manner though it will still represent and unbiased measure of feature size.



A. B.

Figure 3. Zahn and Roskies shape functions for a 300-point interpolation of  the Ramulina globulifera outline 
semilandmark data expressed in the ϕ (A) and ϕ* (B) formats. 
Figure 3. Zahn and Roskies shape functions for a 300-point interpolation of  the Ramulina globulifera outline 
semilandmark data expressed in the ϕ (A) and ϕ* (B) formats. 

Figure 3 shows the Zahn & Roskies shape functions for a 300-point interpolation of the R. globulifera outline 
semilandmarks. As with the example shown in Figure 2, the broad negative ramp in the raw (ϕ) form of these 
data (Fig. 3A), along with the near equivalence of the absolute value of the starting and ending points (ϕ and 
ϕ*), identify this as the shape function of a closed outline. Local  reversals in the trend of the shape function 
locate high-angle bends along the periphery of the shape (e.g., base of tubular spines where they join the 
spherical  test body). From the standpoint of shape characterization and analysis, however, by far the most 
important aspect of these shape functions is the simple fact that, despite the complexity of the R. globulifera 
outline, the equivalent Zahn & Roskies shape function is a true mathematical function, with a single ϕ value 
associated with every step along the entire outline. It is this property that allows Zahn & Roskies shape 
functions to be subjected to the Fourier (and other) data analysis procedure(s).

Before we move on to demonstrating the Fourier analysis part of Z-R Fourier analysis, I want to provide the 
equations that will  allow you to transform any Z-R shape function back into its equivalent Cartesian form and 
say a word about spatial resolution. The back-transformation equations are trivially easy to apply.

xi = xi!1 ! (steplength "(sin!i ))
yi = yi!1 ! (steplength "(cos!i ))

(24.6)

Applying these equations to the R. globulifera data shown in Figure 3 results in production of the following 
reconstructions (Fig. 4). 

A. B.

Figure 4. Reconstruction of the Ramulina globulifera outline from the ϕ* form of the 
Z-R function shown in Fig. 3B drawn as a series of 300 semilandmark points (A) and 
as a joined point series (B).

Figure 4. Reconstruction of the Ramulina globulifera outline from the ϕ* form of the 
Z-R function shown in Fig. 3B drawn as a series of 300 semilandmark points (A) and 
as a joined point series (B).
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Note that this outline is distinctly smoother than the raw outline (see Fig. 1), with many of the small spatial 
irregularities absent and sharp angular bends transformed into more even curves. This smoothing is a by-
product of the interpolation procedure. If a larger number of interpolated semilandmark points are used to 
represent the outline the steplength will  decrease and small-scale features will  be captured with greater 
accuracy. If a lesser number are specified the degree of smoothing will  increase, sometimes to the point 
where important aspects of the outline are represented in a distorted manner or, depending on their relative 
size, not represented at all. 

When performing any analysis that involves interpolation of raw data care must be take to ensure that the 
spatial  resolution selected captures those aspects of geometry that are important for shape characterization 
accurately and adequately across all specimens in the sample. Usually it’s a good idea to reconstruct, plot, 
and inspect all  the outlines you intend to use before you perform any subsequent analyses. That way any 
unanticipated sampling problems can be identified and corrected before time is spent attempting to interpret 
what may be artifactual results.

Once you’ve interpolated your outlines to a common number of equally spaced semilandmark points and 
transformed those into the the angular-deviation format of their equivalent Z-R shape functions you are ready 
to submit the set of outlines to Fourier analysis. Zahn and Roskies (1972) recommended use of the ϕ* 
function for subsequent Fourier analysis as this ‘rampless’ function more closely approximates the form of a 
periodic function formed from radius vectors emanating from a central  point. In principle either the ϕ or ϕ * 
functions can be used as the subject of a Fourier analysis. However, the large difference between the values 
of the two endpoints of the ϕ function usually means a larger Fourier harmonic  spectrum must be used to 
accurately estimate the shape of a set of ϕ functions than is needed to accurately estimate the forms of a set 
of ϕ* functions. Whichever form of the Z-R function is used the Fourier part of the procedure is performed in 
a manner identical  to the one we used to analyse the Sassia outline in the last column. Results of using 25 
Fourier harmonics to model the R. globulifera Z-R (ϕ*) shape function are shown in Figures 5.

A. B.

Figure 5. Fourier harmonic amplitudes (A) and phase angles (B) for a 25-term decomposition of the 300-point Z-R (ϕ*) 
shape function of Ramulina globulifera
Figure 5. Fourier harmonic amplitudes (A) and phase angles (B) for a 25-term decomposition of the 300-point Z-R (ϕ*) 
shape function of Ramulina globulifera

The overall quality of this modelling result can be assessed by using the 25 harmonic amplitudes and phase 
angles to estimate the original (ϕ*) shape function (Fig. 6).
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Figure 6. Overlay  plot of  estimates (red) and reconstructed versions of  the Ramulina globulifera ϕ* 
shape function based on amplitude and phase angle data from a 25-term Fourier harmonic 
spectrum. 

Even using this relatively small number of harmonic  descriptors, the form of the original 300-point shape 
function is represented to a remarkably high degree of accuracy. For a more direct assessment of shape 
variation the estimated shape function could be transformed into its Cartesian equivalent using equations 
24.6 and compared to the original image. Of course, the level of accuracy could be improved further through 
expansion of the Fourier harmonic spectrum. Given a 300-point Z-R shape function the number of potential 
harmonics that could be used to describe the R. globulifera outline is 149.

We are now ready to review an example of how Z-R shape functions can be used to analyze real 
palaeontological data. Consider the set of benthic foraminifer shapes presented in Figure 7.

Figure 7. Benthic foraminiferal shapes used in the example analysis. Note 
preponderance of multi-valued object outlines.
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Many of these species possess multi-valued outlines. Accordingly, this sample cannot be analyzed using the 
radial Fourier method. But all  of these shapes possess an outline that can be converted to a single-valued 
mathematical function using the Zahn and Roskies (1972) technique. Please note the Zahn and Roskies 
procedure works as well  for specimens with true single-valued outlines as it does for specimens whose 
outlines are multi-valued. As a result it is usually a good generalized choice for an outline shape-
characterization strategy, useful  for analysing samples consisting of known single-valued outlines, known 
multi-valued outlines, mixed single-valued and multi-valued outlines, or samples whose outline-value states 
you are either unsure of or can’t be bothered to assess.

The complete set of ϕ* shape functions for the set of 12 species shown in Figure 7 is plotted in Figure 8.

Figure 8. Swarm of  12 Z-R (ϕ*) shape functions for the benthic foraminifer test 
outline shapes.

This type of overlay diagram is analogous to the plots of Procrustes-aligned landmark configurations I’ve 
shown you in previous columns (see MacLeod 2008a, 2009a-c). Just as with Procrustes alignment, the 
semilandmark data have been projected from a form space into a shape space in which translation, scaling, 
and rotational  differences between specimens have all been removed from the system of observations. At 
each of the 100 interpolated steps around the outline of each specimen (x-Axis) 12 angular rotations specify 
the direct to the next semilandmark in the sequence which is equally distant from the preceding landmark on 
a per specimen basis. The mean shape can be calculated as the average of the angular values across all 
specimens in the sample at each step.

As you can see from Figure 8, all these outlines are broadly similar with angular deviations beginning just 
below the 0.0 value and descending to a diffusely defined nadir between steps 5 and 10. These deviations 
then increase to a local maximum in the vicinity of step 40. This trend reverses itself as we continue around 
the outline where the angular deviations descend the ϕ* scale to the a local minimum located between steps 
55 and 80. Positive angular deviations then predominate, rising to a complexly structured peak between 
steps 75 and 97 after which they fall sharply back to the origin of the ϕ* axis. About this sample-level trend, 
exist a complex suite of interesting shape variation patterns. Recall  also that Figure 8 presents us with a 
picture not of the geometries of the Figure 7 shapes themselves, but how those shapes differ from a circle.

As with radial Fourier analysis, we can use the Fourier expansion to define a set of geometrically comparable 
and mutually independent reference shapes (= the Fourier harmonic  series) that can be used as a set of 
variables with which we can describe the complex patterns of shape variation we see in Figure 8. A set of 
example amplitude and phase angle spectra for a 25 harmonic solution is shown in Figure 9. Close 
comparison of barcharts for both the amplitude and phase angle descriptors shows that they are indeed 
picking up the similarities and the differences that exist between these shapes.
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Bulimina mexicana Hormosinelloides guttifer Lituotuba lituiformis

Figure 9. Images (upper row), harmonic amplitudes (middle row) and harmonic phase angles (lower row) for a 25-term 
Fourier description of  a 100-point Z-R (ϕ*) shape functions for three example benthic foraminifer species. Note both 
similarities  and differences in the harmonic amplitude and phase angle spectra, which reflect  similarities and 
differences in the outline shapes of these species.

Figure 9. Images (upper row), harmonic amplitudes (middle row) and harmonic phase angles (lower row) for a 25-term 
Fourier description of  a 100-point Z-R (ϕ*) shape functions for three example benthic foraminifer species. Note both 
similarities  and differences in the harmonic amplitude and phase angle spectra, which reflect  similarities and 
differences in the outline shapes of these species.

Figure 9. Images (upper row), harmonic amplitudes (middle row) and harmonic phase angles (lower row) for a 25-term 
Fourier description of  a 100-point Z-R (ϕ*) shape functions for three example benthic foraminifer species. Note both 
similarities  and differences in the harmonic amplitude and phase angle spectra, which reflect  similarities and 
differences in the outline shapes of these species.

Once we have described the set of foraminifer test shapes in terms of their component Fourier harmonic 
shape variables we can compare and contrast the amplitude and/or phase angle data using an appropriate 
multivariate data analysis procedure. If we are interested in assessing the major patterns of variation in our 
shape data we can use principal components analysis (PCA, see MacLeod 2005). If we are interested in 
obtaining an image of shape similarities and differences among these species we could also use PCA, but 
an arguably better and certainly more interesting choice would be multi-dimensional scaling (MDS, see 
MacLeod 2008b). And if we have subsidiary groupings in our data and want to understand how this group-
level structure is reflected in the shape data we have collected we can apply canonical variates analysis 
(CVA, see MacLeod 2007). The important point to remember here is not to simply apply a procedure 
because you’ve seen someone else apply it to their data or because you’ve heard that this procedure is 
‘accepted’ by this or that school of thought. Take the time to understand how your problem, and how your 
data, match up to the capabilities and assumptions of the different data-analysis procedures, then go with the 
one you believe to be appropriate after researching the subject for yourself. If you haven’t got time — or 
aren’t interested — in doing this research yourself, the safest course of action is always to bring in an advisor 
or a collaborator who is interested in this aspect of the investigation and let them guide you.
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A. B.

Figure 10. Ordinations of  the 12 benthic foraminiferal outlines in the subspace formed by  the first three principal 
components (covariance-based) of  the 25 term Fourier amplitude characterization of  the 100-point Z-R (ϕ*) benthic 
foraminifer shape functions. See text for discussion.

Figure 10. Ordinations of  the 12 benthic foraminiferal outlines in the subspace formed by  the first three principal 
components (covariance-based) of  the 25 term Fourier amplitude characterization of  the 100-point Z-R (ϕ*) benthic 
foraminifer shape functions. See text for discussion.

For the purposes of this column let’s take a look at the major trends in Fourier descriptor-based shape 
variation using PCA. Because there are only 12 specimens in the dataset there are only 12 principal 
components with positive eigenvalues, the first seven of which account for over 95 percent of the observed 
shape variation. Inspection of the ordinations of the first three of these axes (76.86% of shape variation 
represented, see Fig. 10) suggests that they are indeed reasonable. Along PC-1 species characterized by 
thin, uniserial tests (e.g., Hormosinelloides guttifer, Lagena sulcata) are separated from species 
characterized by wide, flaring tests (e.g., Uvigerina basicordata, Uvigerina proboscidea). The second PC axis 
separates forms with a large, ovate proximal  and narrow distal  shape (e.g., Lagena sulcata, Lituotuba 
lituiformis) from species with a uniformly narrow shape throughout (e.g., Hormosinelloides guttifer). The third 
axis separates species with the most pronounced body-neck discrepancy (e.g., Lagena sulcata, Lituotuba 
lituiformis) from those serial forms whose outline is either modestly flaring (e.g., Amphicorda scalaris) or sub-
uniform throughout (e.g., Cassidulinoides parkerianus). Overall, this analysis is analogous to either a 
Procrustes PCA or a relative warps analysis performed on landmark data.

The Zahn and Roskies version of Fourier analysis has not been popular among either biologists or 
palaeontologists because it’s been superceded by other approaches to outline characterization and analysis. 
I’ve presented it in its original  guise in order to clarify the origins of the Z-R shape function and to provide 
space for a fairly detailed discussion of its two variants, ϕ and  ϕ*. Here we’ve been mostly concerned with 
the ϕ* variant. I’ll deal  with the ϕ variant in detail  in a future discussion of eigenshape analysis. Regardless, 
there no reason not to use the Z-R version of Fourier analysis as a more generalized approach to the 
Fourier-based analysis of outlines than the traditional radial Fourier approach. 

With respect to software, other than my own programs and software based on the algorithms I use (e.g., 
Morpho-tools, http://www.morpho-tools.net/) the only public  domain implementation of the Z-R shape function 
of which I’m aware is included in the PAST data analysis package (http://folk.uio.no/ohammer/past/, see also 
Hammer and Harper 2006). Claude (2008) includes a listing of R code to calculate interpolations and the Z-R 
shape function, but a knowledge of R programming is required to implement this code. The Palaeo-Math 
101-2 spreadsheet contains a simple example of the calculations involved. However the equal point-spacing 
interpolation algorithm is a bit tricky — involving successive approximation to the idealized configuration — 
and the Z-R transformation algorithm requires the serval  passes through the data in oder to adjust the 
geometric  details appropriately. Irrespective of these complications, the pay-off for surmounting them is 
possession of a very generalized algorithm that, when employed properly, provides users with the ability to 
quantify a large number of comparisons systematists make on a routine basis, albeit qualitatively, 
imprecisely, and inconsistently.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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