
Palaeo-Math 101
Going Round the Bend: Eigenshape Analysis I

Elliptic  Fourier Analysis (EFA) has proven to be popular among morphometricians who need a technique that 
can deliver analyses of curves defined by sets of semilandmarks. In no small part this has been due to the 
provision of software for, and general championing of, the method, by F. James Rohlf (see Ferson et al. 
1985; Rohlf 1986,1990). However, when examined in detail  EFA has several  limitations that constrain the 
domain of shape analysis problems it can be used to address. Foremost among these is the standard 
Fourier analysis constraint of requiring the curve to conform to the concept of a periodic  function, a function 
that repeats its values at regular intervals or periods. In terms of outline analysis this effectively means that 
EFA — like all Fourier techniques — is designed primarily to analyze closed curves with the shape function’s 
period representing one complete trip around the outline (Fig. 1). But not all  biologically interesting curves 
are closed.1

Figure 1. Globigerina bulloides image with 24 superimposed equiangular radius vectors associated boundary outline points (left). The 
periodic boundary outline function plotted over three cycles (right, with cycle boundaries marked by dashed lines). In order to apply a 
Fourier approach to the characterization of semilandmark sampled boundary outline the implied shape function must be periodic.This 
constraint applies equally to Z-R Fourier and EFA representations of specimen outlines though, in these cases the constraint of equal 
semilandmark spacing does not necessarily apply.
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In addition, Fourier analysis simply redescribes the shape of a boundary outline curve by decomposing the 
positions of the set semilandmark points that represent the curve as an infinite series of harmonic  amplitudes 
and phase angles (Fig. 2). This exercise achieves little in terms of shape analysis per se, but is typically used 
to prepare the semilandmark data for shape analysis. In this sense, transforming semilandmark data into a 
mathematical shape space via specification of a series of normalized radius vectors, Zahn and Roskies (Z-R) 
shape functions, or the separate x and y (and z) functions of EFA prior to Fourier decomposition represents 
the conceptual equivalent of Procrustes alignment, see MacLeod 2009a) while the redescription of such data 
following conversion to a shape function format is the equivalent of principal  warps analysis (see Bookstein 
1991; MacLeod 2010a,b) for landmark data. In standard geometric  morphometrics this procedure was once 
thought useful in its own right, but has now been largely abandoned a because it is recognized as being 
unnecessary for the computation of shape space ordinations via a principal components analysis (PCA) or 
singular value decomposition (SVP) of datasets consisting of Procrustes residuals (see MacLeod 2009a,b). 

1  In some cases Fourier analysis has been used to analyze open curves (e.g., dental arcades, craniofacial profiles, see articles in 
Lestrel 1997), but in all cases the mathematics of Fourier analysis is applied to the data as if it constituted a periodic function. Also it is 
well known that the application of Fourier analysis to forms that do not represent periodic functions introduces in accuracies that must 
be handled by various ad hoc strategies (e.g., discrete Fourier transform, discrete-time Fourier transform, Hamming windowing, see 
Oppenheim et al. 1999; Jacobsen 2003). Interestingly, these discrete signal-correction strategies have rarely (if ever) been applied in 
morphometric analyses.
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Figure 2. Reconstruction of the G. bulloides specimen outline using different numbers of elliptical Fourier harmonic amplitudes (n). 
These Fourier harmonics constitute terms or variables that describe features of the form ordered by steadily decreasing spatial detail.
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Previously Rohlf (1986,1990) has argued that a Fourier analysis can be useful  for smoothing boundary 
outline data prior to shape analysis. This smoothing is accomplished by using a subset of harmonic 
amplitudes and phase angles (e.g., the first few, first 10, first 20) to represent the curve (Fig. 2). But while 
signal analysts and electronic  engineers often use Fourier calculations to construct electronic filters for 
precisely this purpose, the logic  for undertaking this operation seems inconsistent with Rohlf’s advice to 
always use all principal  warps when the principal  warps redescription of landmark data is used as the basis 
for shape analysis (see Rohlf 1993). Note here I’m not drawing attention to the infinite character of the 
Fourier series. The number of unique Fourier harmonics that can be used to is set by the number of 
semilandmark points the data analyst chooses. Consequently, it is possible to always use the maximum 
number of unique Fourier harmonics that can be calculated for any given dataset. Moreover, of smoothing is 
what you’re after the same sort of outline smoothing that can be accomplished by specification of a Fourier-
based filter is accomplished quickly, easily, and routinely at the point of boundary outline data collection 
when the total  number of pixel coordinate points the represent an object’s outline is interpolated down to a 
much lower number of (usually) equally spaced boundary outline semilandmark coordinate points (Fig. 3, 
see also Lohmann and Schweitzer 1990; MacLeod 1999).
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Figure 3. Example of outline smoothing achieved by interpolating a digitized representation of a specimen’s boundary outline to a 
smaller number of equally spaced semilandmark points. The outline of the G. bulloides image (left) was originally digitized using 647 
points.
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Leaving these issues aside, there is also the fundamental objection to the application of boundary outline 
analysis strategies to biological morphometric problems first raised by Bookstein et al. (1982) in the context 
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of Fourier analysis, but later extended to all outline data sets (Bookstein 1990). This argument involves the 
general nature of achieving biologically meaningful  comparisons between shapes and, in particular, the role 
the principle of biological homology plays in informing such comparisons (Fig. 4).
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Figure 4. Variations in the shape ‘distance’ estimates for the same forms under different semilandmark sampling schemes.Figure 4. Variations in the shape ‘distance’ estimates for the same forms under different semilandmark sampling schemes.Figure 4. Variations in the shape ‘distance’ estimates for the same forms under different semilandmark sampling schemes.

Having worked in the area of mathematical  outline analysis for most of my entire professional career I can 
say with a certain degree of authority that much confusion exists in the technical  morphometric  literature, and 
in the minds of many morphometricians, not to mention students and lay practitioners, regarding all these 
issues. In the final sequence of essays for this column I want to take this opportunity to offer a personal 
perspective on these matters by drawing together relevant arguments I have made in various technical 
articles over the years, but which are scattered across time and (literary) space. In the spirit of full  disclosure 
I will unashamedly admit that my purpose in this series of essays will  be to convince you that, if you have 
read anything about outline morphometrics before much of what you have read is incorrect and/or out of 
date, including a number of my own previous publications. But regardless of whether you have or haven’t 
considered these arguments or even thought much about outline morphometrics before I hope you’ll  come 
away understanding more about the role the analysis of outlines — and their 3D extensions, surfaces — can 
play in contributing to the future of morphological data analysis in biological and palaeontological contexts.

To show how it is possible to undertake an outline analysis without going through an initial Fourier 
redescription, and the advantages inherent in doing so, let’s go back to a consideration of the Z-R shape 
function. As you will  recall this function was developed for use with Fourier analysis as a way of representing 
a closed form outline as a periodic function without having to specify a center from which a series of radius 
vectors emanate. Using the Z-R shape function a Fourier analysis can be used to decompose any boundary 
outline curve, no matter how complex (Fig. 5), into a series of harmonic  amplitudes and phase angles; even 
multi-valued curves that cross themselves. Interestingly, the shape functions used as the basis for EFA have 
this same property (see MacLeod 2012) as does Bookstein’s (1978) tangent angle approach to outline 
characterization. For now, however, let’s use the Z-R shape function as a place to begin developing an 
alternative to Fourier analysis for the study of boundary outlines that’s more in keeping with the spirit, and the 
mathematical letter, of geometric morphometrics.
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Figure 5. Steps in calculating the Zahn and Roskies (Z-R) shape function. A. original set of semilandmark data 
points placed on the periphery of a hypothetical shape. The red landmark represents the starting point for 
digitization. Ideally this point should be placed on a topologically homologous landmark. Note the uneven 
interlandmark spacing. B. Adjustment of original data (via interpolation) to a set of equally spaced semilandmark 
points. Again, the red landmark represents the starting point for digitization. The inset illustrates the expression of 
the shape of the outline as a series of net angular deviations (see text for discussion). C. the ϕ form of the Z-R 
shape function with a typical ramp that denotes a closed curve. D. the ϕ* form of the Z-R shape function with 
represents the shape residual after removal of the ramp of circularity.

The Zahn and Roskies procedure (usually) begins with the collection of a set of equally spaced x,y 
coordinates (or x,y,z coordinates if a three-dimensional analysis is required, see MacLeod 1999) along an 
outline or curve of interest (Fig. 5A). If the curve has a closed form it can be regarded as being an n-sided 
polygon where n is the number of semilandmark points used to represent the curve’s geometry. Since the 
distance between each point is the same we need only remember one distance value for the entire outline. 
This is termed the ‘steplength’. For curves that have been sampled to the same number of semilandmark 
points the steplength will  be proportional  to the length of the outline, which is to say its size. Size may be 
removed or retained in an analysis by eliminating or including the steplength for each boundary outline curve 
in the sample data matrix. 

Once control  over size has been gained in this manner, the shape of the outline can be represented in a 
‘street direction’ manner of the Z-R shape function: as a series of angular turns that need to be executed in 
order to travel  around the outline in steps of equal  length and (if the curve is closed) arrive back at the 
starting point. Mathematically it is convenient to express these angles as a series of net angular deviations 
from the direction taken in the previous step, and to express them in radians rather than in degrees.2  This 
operation effectively removes differences in the rotational  orientation between the specimens. Since we’re 
expressing the shape of the curve as a set of angles, differences in the position of specimens within the 
system of semilandmark coordinate values are automatically rendered irrelevant. Accordingly, calculation of 
the Z-R shape function of the original semilandmark data, in addition to redescribing the form of the outline 
exactly, also accomplishes the three tasks of a Procrustes alignment: removal  of positional, rotational, and 
scaling differences between specimens. To be sure, the Z-R shape transformation does not accomplish this 
task using the same mathematics as Procrustes alignment. But the result is largely the same irrespective of 
the calculations employed (Fig. 6).
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2 A radian is the ratio of an angle’s arc to its radius. It’s used to express the value of an angle as a dimensionless distance rather than as 
a number of degrees of a circle.
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Figure 6. Comparison of shape coordinates calculated on the basis of the 
Z-R and Procrustes procedures for a set of 24 equally spaced 
semilandmark points around the peripheries of three benthic foraminifer 
species.
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In the early 1980s George (Pat) Lohmann, who was (and still is) a Woods Hole Oceanographic Institution 
micropalaeontologist stumbled onto the Z-R shape function while looking to develop a method to organize 
the outlines of microfossils quickly, easily, accurately, and as simply as possible. The Z-R shape function is 
well suited to the job Pat had in mind for not all  microfossil outlines are single valued and often the 
mathematical center of a microfossil’s outline does not correspond closely to its anatomical center. But unlike 
Zahn and Roskies (1972), Pat didn’t see any need to redescribe the redescription of these outline shapes 
using Fourier harmonics and then analyse sets of harmonic  amplitude values using a multivariate ordination 
technique such as principal components analysis (PCA) or singular value decomposition (SVD). Instead, he 
felt it would be more efficient to regard the values of the n angular terms of the Z-R shape function as a set of 
valid shape variables in their own right.

Lohmann dubbed his direct approach to the analysis of specimen outlines by means of the Z-R shape 
function ‘eigenshape’ analysis (Lohmann 1983). This name signifies the two critical  aspects of his procedure 
(1) complete representation of the set of outlines as sets of geometrically equivalent shape functions an (2) 
assessment of the major directions of observed and measured shape variation in a dataset by means of 
eigenanalysis. However, in addition to these procedures Pat adopted several conventions early in the 
development of eigenshape analysis that, with the benefit of hindsight, I feel have tended to limit the scope 
of its application and obscure links between his eigenshape procedure and what came later to be known as 
geometric morphometrics.

In particular, Pat followed Zahn and Roskies’ (1972) recommendation to use a ‘normalized’ version of the raw 
Z-R function as his preferred form of the shape function. The factor Zahn and Roskies recommended be 
removed from shape data was the form of a circle which they described as ‘the most shapeless closed 
form’ (Zahn and Roskies 1972, p. 270). Mathematically, this operation means that normalized Z-R shape 
functions express patterns of deviation from circularity. 

It should be appreciated that this suggestion is entirely in keeping with the Fourier-based aesthetic  of Zahn 
and Roskies’ original  work. After all, the 0th harmonic of a radial Fourier series is a circle and all  subsequent 
harmonics in the series express patterns of deviations from this circular ideal. Also, removal  of the ramp that 
denotes constant angular deviation in the raw Z-R shape function (see figs 5C and 5D) makes the function 
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appear to fit the ideal  of a periodic function to a greater extent than the typical  form of the raw shape function 
(compare Fig. 5D with Fig. 1) — another nod to the exigencies of applying a Fourier decomposition to such 
representations of shape. 

Strictly speaking, however, use of this normalization procedure is, at best unnecessary and at worst 
detrimental, from the standpoint of shape analysis. The raw Z-R shape function data is an exact description 
of the outline’s geometry all by itself. Indeed, the raw Z-R shape function is a more complete representation 
of the boundary outline’s geometry than the normalized version because it contains all the information 
necessary to reconstruct the measured shape. By removing the factor of circularity from the raw function the  
normalized form, in a sense, ‘hides’ the circular nature of the curves’ geometry from view (and from 
subsequent analysis). But most importantly from the standpoint of shape theory, arbitrary selection of a circle 
as the reference shape means that the linear plane(s) tangent to the Kendall  shape space onto which the 
outline data will be projected by the PCA and/or SVD procedures in order to represent patterns of similarity 
and difference within a sample of outline shapes will always be located in a suboptimal orientation relative 
the data of any given sample (see Kendall 1984; Bookstein 1991; MacLeod, 2009c). This, in turn, means that 
the resulting ordinations in PCA/SVD-determined geometric subspaces will  contain a systematic bias in the 
placement of shapes the severity of which will be proportional to the difference between the samples’ true 
mean shape and that of a circle. To be fair, the problems inherent in arbitrarily selecting a shape to use for 
shape normalization were not known in the early 1980s, much less the early 1970s. In this regard Zahn and 
Roskies’ and Pat’s failure to appreciate the effect this type of normalization would have on subsequent shape 
analyses is perfectly understandable. But these issues are well  understood now and need to be kept in mind 
when evaluating classical  eigenshape analysis as well  as subsequent developments in the formulation, as 
well as options for application, of the eigenshape procedure.

The other aspect of the original eigenshape procedure that can be questioned legitimately is the manner in 
which biologically common features are matched across a sample of outlines by eigenshape analysis. In 
standard radial, Z-R, and elliptical Fourier analysis the issue of feature mapping does not arise as the 
coefficients of the Fourier amplitudes are insensitive to the starting point for outline digitization. Indeed, it is 
for this very reason that most Fourier representations of outline shape employ only the amplitude terms as 
shape descriptors. This is fine for a wide variety of physical shapes (e.g., sand grains). But the outlines of 
biological specimens differ from the outlines of most natural physical objects. Most biological  outlines include 
combinations of discrete anatomical regions (e.g., head, trunk, appendages), structures (e.g., eye, nose, 
mouth) and substructural characters that exhibit a polarities of various sorts (e.g., proximal, distal). Ideally, 
discrete subsets of semilandmark points in the outline sequence should fall  on biologically comparable parts 
of the form across all  specimens in the sample. Fourier analysis finesses this critical issue because such 
distinctions don’t exist in terms of harmonic amplitude-based representations of outline shape. But exist they 
do in the real  worlds of biology and palaeontology. Morphometricians who decide to throw this information 
away do so at their peril  for any single set of Fourier harmonic amplitudes, when taken in isolation from their 
associated phase angles, is non-unique. Such data actually describe an infinity of shapes.

Lohmann (1983) approached this issue in the context of eigenshape analysis in two ways. First, if a 
landmark could be identified on the outline that was common to all specimens in the sample it was 
recommended this be used as a common starting point for outline digitization. By using a common point of 
reference for sampling the outline, and by sampling the outline using a constant number of equally spaced 
semilandmark points, the outline is ‘homologized’ in a topological  sense irrespective of which biological 
structures individual semilandmark points fell  on across the sample. In this way outlines on which truly 
comparable point locations are few could be matched in terms of their computed geometries. In cases where 
the specimen outlines included no landmark that could be used as a starting point for outline digitization, Pat 
recommended that a reference specimen be selected and the Z-R shape functions be rotated to positions of 
maximum correspondence with this reference. Again, the homology is topological and is computed rather 
than interpreted, but only because the biological information necessary match outlines using other criteria is 
lacking. 

In no case was any pretence made that this method of computing topological homology maps between 
specimens was preferable to the location of genuine landmarks provided these were available. Rather, the 
eigenshape strategy was justified as simply being preferable to pretending that landmark point locations 
existed on a structure when they clearly did not or were subject to a great deal of uncertainty with regard to 
their exact positions. Eigenshape approaches the the outline analysis problem are regarded by their 
practitioners as an efficient and pragmatic solution that while far from perfect, is undeniably preferable to 
giving up and foregoing the quantitative, geometric analysis of a large number important biological structures 
that taxonomists, palaeoecologists, palaeogeographers, biostratigraphers, etc. have been comparing 
qualitatively for (literally) centuries. Indeed, those with direct experience of how taxonomists actually make 
qualitative comparisons between differing sets of morphologies in the absence of the biological signposts 
provided by valid landmarks know that most use an approach essentially identical  to the computation of 
topological homology maps.
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Once the outlines for a set of specimens had been quantified via specification of equal  series of 
semilandmarks, redescribed using the Z-R shape function, and assembled into an n x m data matrix (where 
n = the number of specimens in the sample and m = the number of semilandmarks collected from each 
outline, Lohmann (1983) advocated description of the structure of relations among the semilandmarks by 
calculating an m x m pairwise correlation matrix. Selection of the correlation matrix as the basis for structural 
comparison seems an odd choice as all  the values in the data matrix cells are angles (expressed as radians) 
and so represent the same types of both quantities and magnitudes. In most instances the covariance matrix 
would be chosen to represent data of this type. However, use of the covariance matrix would mean that 
some parts of the outline — specifically the parts characterized by more angular bends — would have a 
differential  influence in determining the orientation of the eigenvectors that are used to assess patterns of 
shape variation. Pat made the decision that he did not want certain regions of the outline to ‘pull’ the 
eigenvectors toward themselves in an orientational sense, and so opted to represent structural relations in a 
manner that ensured all  regions of the outline would count equally in determining the final  result. This 
decision is contrary to what has become standard practice in geometric  morphometrics of employing the 
covariance matrix to represent structural relations among landmark variables and simply accepting that, 
within such a system, landmarks whose relative positions are more variable across the sample will be more 
highly weighted in the result than more conservative landmarks.

After calculation of the covariance matrix Lohmann recommended using SVD to decompose the correlation 
matrix. If X is the n x m data matrix of n specimens and m shape function values the basis matrix of structural 
relations among variables can be provided by either of two matrices.

Zr = XX’ (26.1)

ZQ = X’X (26.2)

Where: X’ = transpose of X
             Zr = matrix of covariances/correlations
                    between semilandmarks
             ZQ = matrix of distances/correlations between 
                    specimens (shapes)

If each shape function is normalized to have a zero mean and unit variance (= row normalization) ZQ will 
contain the pairwise correlations between specimens, otherwise these values will  be distances. Similarly, 
each term of the shape function is normalized to have zero mean and unit variance (column normalization) 
Zr will contain the pairwise correlations between shape variables; otherwise these values will be covariances.

The Eckart-Young Theorem tells us that any matrix can be expressed as the product of three matrices.

X =VWU’ (26.3)

Where: V = eigenvectors of Zr
            W = diagonal matrix of singular values (= square
                    roots of the eigenvalues of V and of W)
            U’ = transpose of eigenvectors of ZQ

If Z is a symmetrical, square matrix the sets of eigenvectors contained in V and U will be identical. These m 
eigenvectors will coincide with the major directions of variable-normalized shape variation present in the data 
subject to the constraint that all  eigenvectors be oriented at right angles to one another (= orthogonality). The 
eigenvalues represent the lengths of these eigenvectors which, when added together will be equal to the 
sum of the variances of each of the original (shape) variables. Because the eigenvectors are aligned with the 
maximal directions of variation in the set of variables as a whole — taking account of inter-shape variable 
covariances/correlations — the first few eigenvectors will represent a greater proportion of the observed 
shape variation than any single shape variable can represent; often a dramatically greater proportion. 
Geometrically the m eigenvectors contain m values each of which is a covariance or correlation between the 
eigenvector and each of the m original variables, so long as n ≥ m. If n < m (which is often the case in an 
eigenshape analysis) only n eigenvectors and with n positive eigenvalues will be extracted. 

In standard eigenshape terminology these eigenvectors are termed ‘eigenshapes’ though this is somewhat 
confusing insofar as the eigenvectors do not represent singular shapes. Rather, these coefficients (or 
loadings or weights) represent patterns of association between the orientation of the eigenvector and the 
positions of the original  variables in the space defined by between variable covariances/correlations. In 
effect, each eigenvector represents a hypothetical trend or pattern of outline shape deformation with some 
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regions of the outline being more directly aligned with a particular eigenshape axis than other areas. The 
geometric  signature of this alignment takes the form of the positively and negatively aligned regions 
becoming more differentiated from one another at the positive and negative extremes of shape variation 
seen in the sample and less differentiated form one another near the center of the observed shape 
distribution (see below for a graphical example).

As with principal components analysis and/or principal coordinates analysis individual  outlines the 
covariance or correlation of Z-R shape functions of equivalent dimensionality with each of the m eigenshapes 
(= eigenvectors) can be determined either by using the standard covariance/correlation equations or by 
using their matrix algebraic equivalents, either:

scores = XV (26.4)

or

scores = UX’ (26.5)

Now that we have the basics of a standard eigenshape analysis down let’s take a look at the results of a 
typical analysis by applying the Lohmann (1983) procedure to our sample of foraminifer outlines (Fig. 7).

Ammobaculities jarvisiAmmobaculities jarvisi Amphicorda scalarisAmphicorda scalaris Bulbobaculites problematicusBulbobaculites problematicus

Bulimina mexicanaBulimina mexicana Cassidulinoides parkerianusCassidulinoides parkerianus Hormosinelloides guttiferHormosinelloides guttifer

Karrerulina conversaKarrerulina conversa Lagena sulcataLagena sulcata Lituotuba lituiformisLituotuba lituiformis
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Figure 7. Zahn & Roskies shape function representations of the the outline shapes of 12 benthic foraminifer species. The outline of 
each specimen was interpolated to 100 equally spaced semilandmark points with outline digitization beginning at the center of the 
aperture in each case. Note highly diagnostic character of the outline shapes along with the lack of consistently identifiable landmark 
points (other than the aperture) on the peripheries of these specimens.
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As has been the case typically with classic  Lohmann-style eigenshape analysis the resolution of the 
boundary coordinate outlines for this dataset was set arbitrarily to a value of 100 semilandmark points (see 
Lohmann 1983). This figure is based on experience with eigenshape analyses and seems to result (in most 
cases) in representation of an outline’s geometry to a level of accuracy such that the form of most 
taxonomically important morphological substructures are recognizable while, at the same time, suppressing 
the incidental  variation associated with surface texture, minor imperfections in structure, adhering sediment 
particles and/or dust, etc. These x,y coordinate points were transformed into their equivalent normalized Z-R 
shape functions (ϕ*) and the values of those functions used to construct a 12 x 100 data matrix of outlines 
and shape function coefficients. 

Eigenanalysis decomposition of the pairwise correlation matrix resulted in the extraction of 12 eigenshapes 
(= eigenvectors) of which the first nine represented > 95 percent of the observed shape variation (Table 1). 
By way of comparison, an eigenanalysis of a matrix of 50 Z-R Fourier harmonic amplitudes and phase 
angles also resulted in the extraction of 12 eigenvectors of which the first ten represented > 95 percent of the 
observed shape variation. While the saving of a single eigenvector may not sound terribly significant, 
remember this is a very small example dataset. When larger datasets are considered the dimensionality 
reduction that can be achieved by eigenshape is often more impressive, Still, even with these data it is clear 
that Lohmann’s (1983) eigenshape approach results in a more efficient analysis than the equivalent Fourier 
procedure; more information relevant to the characterization of shape variation in the sample is loaded onto 
the first few eigenvectors which, in terms of the qualitative interpretation of major shape trends, are typically 
the only shape variables that are inspected in any detail.

Table 1. Comparison between eigenvalues extracted from the eigenshape and ZR-Fourier analysis of the benthic 
foraminifer data.
Table 1. Comparison between eigenvalues extracted from the eigenshape and ZR-Fourier analysis of the benthic 
foraminifer data.
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foraminifer data.

EigenvaluesEigenvalues

EIgenvectors Eigenshape Z-R Fourier

1 24.7607 24.8702

2 43.4817 39.6529

3 61.8433 52.9220

4 71.1037 62.9865

5 77.9684 71.9990

6 84.1625 78.8567

7 88.4970 84.8566

8 92.5691 89.7922

9 95.7202 93.9723

10 97.9810 97.8552

11 100.0000 100.0000

12 100.0000 100.0000

This diagram included in Table 1 represents a tabular and graphic demonstration of one of Lohmann’s main 
practical arguments for the eigenshape approach over that of Fourier analysis. Greater efficiency is gained 
by allowing the data to specify the modes of shape variation most suitable for its own characterization than 
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by forcing this characterization to be routed through an arbitrary — though highly elegant — set of idealized 
shape descriptors: the Fourier series. In addition, if the pairwise covariance rather than the correlation matrix 
is used to represent geometric  relations within the data, eigenshape analysis has the advantage of allowing 
regions of pronounced shape variation within the boundary outline to attract the eigenvector axes to 
themselves in an orientation sense.3 This improves the interpretability of the eigenshapes in contexts that are 
useful for testing biological  hypotheses. The distribution of foraminifera outline shapes within the space of the 
first three eigenshapes is shown in Figure 8.

Figure 8. Distribution of  benthic foraminifer shapes in the subspace formed by  the first three 
eigenshape axes. See text for discussion.

While this plot may seem superficially similar to those we have seen for this dataset before, the outline shape 
grouping we see recorded there in are actually rather remarkable and certainly quite a bit different picture of 
patterns of shape similarity and difference for this sample from that offered by elliptical  Fourier analysis (EFA, 
compare with Fig. 6 in the previous Palaeo-Math 101  column, MacLeod 2012). This plot also shows nicely 
why you need to develop skill  in visualizing point distributions in (at least) three dimensions in order to 
interpret these data correctly.

There are three obvious groups of outline shapes along the first eigenshape axis (ES-1). Hormosinelloides 
guttifer projects to the lower end of ES-1 which seems appropriate as it is the only species exhibiting inflated, 
spherical, uniserially arranged chambers. At the other extreme of this axis La. sulcata, Li. lituiformis the two 
Uvigerina species, and Ab. jarvisi form a heterogeneous group whose unifying characteristics appear to be 
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common possession of a pronounced apertural  neck or, in the case of the latter species, pointed apertural 
constriction. This group is further subdivided along the second eigenshape axis by the relative length of the 
neck/constriction with relatively short features plotting low along ES-3 and relatively long features plotting 
high. In the middle of ES-1 a heterogeneous grouping of species if gathered together that possess neither of 
these (for this sample) extreme morphologies.

Interestingly while accounting for a smaller proportion of the observed shape variation the ordination of 
shapes along the third eigenshape axis (ES-3) is as informative if not more so. Here shapes whose outlines 
are pinched at either end and inflated in the middle (the two Uvigerina species and the bulimulid) are 
contrasted with shapes that are narrow along their long axis, but inflated at either one (Bu. problematicus) or 
both (Re. berggreni) ends. Again, this seems quite a natural  distinction given the set of shapes present in the 
dataset, but one that is far from obvious as the third most important shape trend in these data from a simple 
visual inspection of Figure 7. Also, far from obvious in Figure 7 is the fact that these major shape groupings 
are quite well structured within this dataset. The uvigerinid and bulimulid species form a distinct subgroup 
within this subspace that does indeed reflect their distinctive shapes, as do the ‘long-necked’ species La. 
sulcata and Li. lituiformis. There are no intermediates occupying the theoretical  shape space between these 
well-defined regions. Uniquely shaped species such as Ho. guttifer, Re. berggreni, and Bu. problematicus 
are also identified as such in this subspace, along with unanticipated — and rather charming — underlying 
organizational similarities (e.g., the geometric  link between Bu. problematicus and Re. berggreni  in the 
context of this small sample of shapes.

Some, but by no means all, of the structure we see in the eigenshape results as present in the ordination 
spaces created as a result of the PCA analysis of EFA amplitude coefficients extracted from of the same 
empirical  data (compare Fig. 8 with Fig. 6 of the previous Palaeo-Math 101 column, MacLeod 2012). But with 
the exception of a few of the extreme shapes (e.g., La. sulcata, Li. lituiformis, Re. berggreni) the same level 
of clarity in the recognition of outline shape based subgroupings achieved by eigenshape analysis is simply 
not present in the EFA-based shape space ordinations. Presumably this is because of the intermediate step 
taken by EFA of decomposing and redescribing outline shape variation as a series of Fourier harmonic 
amplitudes. 

It’s also worth noting here that, while the EFA analysis was conducted using 97 variables (and so was 
comparable to the eigenshape analysis in terms of overall  dimensionality) only 25 EFA harmonics were used 
to characterize each shape. It could be the case that these 25 harmonically-defined shapes were insufficient 
to capture all  of the salient morphological  features present in the outlines of these sample shapes. If so, this 
a deficiency that could be addressed by simply increasing the harmonic resolution of the EFA analysis. 
However, this would increase the dimensionality of the data analysis and, as we have already seen (e.g., 
Bellman 1957; MacLeod 2007) increasing the dimensionality of a dataset often has unanticipated 
consequences for a data analysis and usually requires dramatic  increases in the sample size in order to be 
confident in the results. But even if we accept this as a potential strategy for EFA analysis, it still  does not 
change the fact that eigenshape analysis was able to sense and represent accurately the structure of shape 
relations in this small  dataset in the context of a dimensionality that was comparable to that of an EFA of the 
same empirical  data to an extent that the latter procedure was not. Neither analysis is wrong. But the result 
produced by eigenshape analysis is the more biologically informative.

It probably should go without saying at this point, but all  the shape modelling tools I have introduced you to 
and illustrated the utility of in previous columns are also available for eigenshape analysis. Their use greatly 
improves the interpretability of the ordination spaces in which eigenshape data are often portrayed (e.g., Fg. 
8). Along-axis shape models for the first three eigenshape axes of the benthic  foraminifer outline dataset, 
along with accompanying model overlay or ‘strobe’ plots, are shown in Table 2.

Table 2. Along axis models existing at coordinate locations along the first  three eigenshape axes of  the benthic 
foraminiferal dataset.  The specific coordinate position at which each model was calculated is shown below each model 
(in parentheses).
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foraminiferal dataset.  The specific coordinate position at which each model was calculated is shown below each model 
(in parentheses).

Eigenshape 
Axis Model 1 Model 2 Model 3 Model 4 Model 5 Overlay

ES-1

(-5.05,0.00,0.00) (-3.09,0.00,0.00) (-1.13,0.00,0.00) (0.84,0.00,0.00) (2.80,0.00,0.00)
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ES-2

(0.00,-3.12,0.00) (0.00,-1.67,0.00) (0.00,-0.21,0.00) (0.00,1.25,0.00) (0.00,2.71,0.00)

ES-3

(0.00,0.00,-3.25) (0.00,0.00,-1.75) (0.00,0.00,-0.25) (0.00,0.00,1.26) (0.00,0.00,2.76)

Comparing these models with the equivalent EFA shape space models (see Table 3 of the previous 
newsletter’s Palaeo-Math 101 column, MacLeod 2012) is also instructive. The eigenshape models look 
decidedly rougher, more asymmetric; on occasion virtually pathologic (e.g., ES-1, Model 1). This rough look 
may strike many as disquieting compared to the overt symmetries that Fourier shape models usually display. 
But this rough look underscores the fundamental strength of eigenshape analysis and the reason it delivers 
better results in the vast majority of instances than radial Fourier, Z-R Fourier, or elliptical Fourier analyses. 
The outline shapes present in the dataset are also rough, asymmetric and full of relatively small  irregularities, 
In some cases these are nothing more than idiosyncrasies of the specimen chosen for analysis; part of the 
noise that is present in any shape analysis. But in others these roughnesses, asymmetries and irregularities 
are part of the fundamental  geometry, not only of the specimen, but part of the group the specimen 
represents; part of the signal  the data analyse is seeking. Fourier analysis passes the representation of 
these geometrically ‘difficult’ features through the filter of a set of highly structured, smooth, symmetrical 
shape variables. Accordingly, it often takes quite a number of Fourier harmonics to represent these aspects 
of organismal outlines accurately. 

Eigenshape analysis, on the other hand, is not troubled in the least by roughness, asymmetry or irregularity. 
All  eigenshape responds to is the collection of shapes at whatever level of spatial resolution the data analyst 
as chosen to represent them at. All  it does is deliver an efficient representation this observed shape variance. 
Eigenshape analysis zeros in on precisely those features of the outline shapes that are responsible for 
shape variation in the sample and not concern itself with the elegance of the shape variables it uses for this 
purpose. Rohlf (1986) assumed these rough sorts of features are more likely to be part of the shape noise 
than part of the shape signal and so would lead to the production of spurious and difficult-to-interpret results 
in an eigenshape analysis. I must say that after almost 30 years of personal  involvement performing 
eigenshape analyses in a wide variety of contexts, just the opposite has been my experience. In the vast 
majority of cases eigenshape analysis does a better job recognizing the geometric  structure of the 
distribution of shapes present in a sample than Fourier (and other forms of) outline analysis because real 
specimens exhibit a variety of shape-based similarity and difference patterns at a variety of scales and 
because these highly complex, geometrically ‘difficult’ patterns. These are the very stuff of biological shape 
variation; the aspects of that variation biologists are interested in, the aspects that comprise the subjects 
morphological taxonomy, morphological ecology, morphological  biogeography, morphological function, etc. 
Best of all, the eigenshape approach to outline analysis I’ve described and demonstrated here is just the 
starting point for a set of variations on the eigenshape theme that — as we’ll  see in the next column — can 
(i) expand the utility of eigenshape analysis beyond the assessment of closed curves, (ii) improve the link 
between topological and biological homology in the representation of boundary curves, (iii) combine the 
analysis of landmarks with the analysis of outlines, and (iv) align this technique with the basis of geometric 
morphometrics in a formally mathematical (rather than simply a conceptual) sense.

As for software, since classical eigenshape analysis amounts to little more than a PCA of Z-R shape function 
data, and since the Z-R shape function is quite easy to calculate from normal x,y coordinate point data (see 
the section in the Palaeo-Math-2 Spreadsheet for this column and for MacLeod 2011), with a little ingenuity 
this methods can be implemented by anyone using resources available to them in the public domain. I have 
made available my personal eigenshape routines for eigenshape analysis as compiled applications for both 
Mac and PC operating systems. Øyvind Hammer’s Past (http://folk.uio.no/ohammer/past/) programme 
package implements a form of eigenshape analysis. Both standard and extended version of eigenshape 
analysis based on my algorithms are also available for use as web-based applications from the Morpho-
Tools web side (http://www.morpho-tools.net/). Finally, the Mathematica™ routines I have developed for the 
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implementation of eigenshape analysis, and that I used to perform the analyses I reported here, are 
available for users of that software computing system. I also am aware that R-based eigenshape routines are 
included in Claude (2008).

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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