
Palaeo-Math 101 
A Picture May Be Worth 1,000 Landmarks !
I began this series on mathematical methods in palaeobiology in 2004 with a consideration of regression 
methods that describe the relationship between two simple linear distance variables, illustrating these with 
data collected from a series of digital images of trilobites. Obviously our discussion has ranged rather broadly 
across the mathematical, data analysis, and taxonomic landscapes since then. For this essay — the last in 
the series — I’d like to return to the question of how we can extract data from the morphological information 
presented to us by organismal forms, usually (these days) through the medium of digital images. !
Perhaps the most basic concept in the field of quantitative data analysis is that of the variable. Variables are 
the observations we make, usually in the form of measurements, on the set of specimens that comprise a 
sample of some population of interest. Variables come in many types and forms. If you take nothing else 
away from these Palaeo-Math essays please let it be that, for the purposes of describing and comparing 
specimens across a sample (not to mention drawing inferences about the population[s] from which the 
sample was drawn), the variables are the specimen; the only information any data analysis procedure has 
access to. As such, it is of the utmost importance that the variables we choose to represent our specimens 
be appropriate, both to the specimens in question and the hypotheses under consideration. If our variables 
do not meet these criteria in some reasonable and defensible manner, it is likely that any results we generate 
from their analyses will be compromised and/or (ultimately) questioned. For example, if we are interested in 
phenomena pertaining to the arrangement of component parts of the specimen relative to each other, and if 
the majority of those component parts are not located on the specimen outline, it makes little sense to restrict 
data collection to the geometry of specimen outlines. Similarly, if we are interested in questions pertaining to 
the general form of the specimens, and if this general form is best represented by the specimen’s outline, it 
makes little sense to restrict data collection to a small set of landmarks located within the outline. !
But what if we’re not sure what parts of the morphology are important in terms of assessing similarity and/or 
difference relations among the specimens comprizing the sample? What if the variability in your specimens is 
such that the identification of corresponding point locations (landmarks, starting points for outline digitization) 
across the sample is simply not possible? Perhaps even more importantly, suppose we want to include as 
much morphological information about our specimens as possible and/or are uncomfortable with the idea of 
abstracting the specimens down to a (relatively) small set of variables a priori? Is there a way of handing this 
generalized problem within the context of a morphometric analysis? !
Recently I ran into a situation of just this sort in the form of an student’s MSc project. The student wanted to 
quantify the pattern of wing ornamentation of mimetic butterfly species morphs (Fig. 1) in order to compare 
wing colour variation to gene sequence variation. On the face of it this seemed simple enough, just 
determine which aspects of the ornamentation pattern were common to all specimens in the sample and 
base the measurement system on those using landmarks or outlines or landmarks + outlines where 
appropriate. After explaining these principles to the student I sent her away to design her measurement 
system and collect the data. Much to my surprise, she reappeared at my office door a few days later in a 
somewhat disturbed state having tried repeatedly to follow my instructions but failing at each attempt. After a 
bit of discussion it became apparent why. As can be seen in Figure 1, there are very few features of the wing 
ornamentation pattern present across Batesian mimic species and those that are present tend to be of quite 
a generalized character (e.g., orange region in the centre, black peripheral areas with light coloured spots 
and/or blotches). In essence, these mimics are somewhat approximate — not close — copies. !

!  !
Figure 1. Morphological variation in a set of Batesian mimic butterfly species. A. Danaus chrysippus (model species). B. Danaus 
chrysippus f. trophonius (mimic). C. Danaus chrysippus f. lamborni (mimic). Note the similarity of all three colour morphs in terms of the 
general distribution of colours across the wings, but also the level of fine-scale difference in the number, sizes, and shapes of spot 
patterns. These inconsistencies make it difficult to use standard morphometric variables to characterize patterns of wing colour morph 
similarity and difference. 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The standard response to a situation like this would be (sadly) to either abandon a morphometric approach 
entirely or collect a small set of landmarks or outline semilandmarks and analyse these rather than the colour 
blotch patterns. After all, if there are no form-related features common to the blotch patterns in all specimens 
there would appear to be no basis on which to compare them. At least that’s how the logic would typically 
run. But it’s obviously a false logic. The fact is entomologists, non-specialist collectors, and even butterfly 
predator species are able to make comparisons between the patterns of these butterfly wings. Indeed, that’s 
the whole point of Batesian mimicry! The former two groups have been making such comparisons for 
(literally) centuries and it’s been going on for millions of years in the case of the predators. If entomologists 
and butterfly predators can make comparisons between morphologies like these, quantitative morphologists 
and morphometricians should be able at least to make a stab at treating the same problem quantitatively. But 
how?  !
So as not to compromise the student’s ability to publish her mimetic butterfly results, I’ll shift at this point to 
an analogous image dataset I often use to introduce the concept of morphological variation to my students 
(Fig. 2). While this small collection of ladybird beetle images are decidedly not fossils, they serve to illustrate 
the full range of morphological variation in biological datasets better than a typical fossil dataset might. 
Regardless, the methods I’ll develop below will apply equally well to images of fossil specimens where colour 
blotches on the specimen are often irrelevant. !

!  !!
Figure 2. Drawings of 24 ladybird beetle species (Family Coccinellidae) illustrating a range of body form and 
colour morphs. As with the Batesian mimic butterflies (see Fig. 1) the complexity of variation in body form, 
colour, the distribution, numbers, sizes and shapes of spots makes this sample difficult to characterize using 
standard linear distance, landmark, or semilandmark variables. !

Among these drawings of ladybird beetles we see copious variation in body shape, leg & antennae pose, 
and both colouration and colour texture of the elytra, thoracic and head shields. Despite being all too typical 
of morphological datasets — open just about any well-curated museum drawer; this is what you’ll see — 
none of the many tools of numerical data analysis and/or morphometrics I’ve discussed in this column can 
handle the problem of characterizing similarity/dissimilarity relations within this sample — or at least not 
obviously so.  !
The patterns we see in this figure seem too complexly structured to be characterized adequately by sets of 
linear distances, landmarks or semilandmarks. Yet, in the absence of taking some sort of measurement we 
cannot answer even the most basic questions about this sample. What is the mean form and colour pattern 
of this sample? Is morphological variation distributed continuously or discontinuously? Does the distribution 
of forms and colour blotches have a single or multiple modes? If the latter, how are those modes arranged 
relative to one another? More depressing still, these are the easy, descriptive questions. If we want to 
provide answers to more complex biological and/or evolutionary questions such as how these patterns of 
morphological variation covary with environment, geography, ecology, behaviour, genotype, phylogeny, etc, 
an ability to compare each of these forms to one another quantitatively is crucial. But if none of the tools, 
concepts, or methods we’ve discussed to date are up to this task, have we simply been wasting our time 
learning methods that might pertain to some small subset of morphological data-analysis problems, but are 
unsuited to the majority of routine morphological data-analysis situations with which we are confronted? Is it 
really true that the best we can do in this case is shrug our shoulders and go back to the qualitative 
inspection and appeals to ‘authority’ in deciding these issues? !
Of course we can do better than this. Like so many problems in science — and especially in mathematics — 
this seeming intractable problem yields with surprising ease to a simple shift in the conceptual frame of 
reference. The standard way of approaching the morphology sampling problem is to find a series of 
topologically homologous, relocatable points across the forms of interest and record their coordinate 
positions. From these coordinate positions either linear distances or shape coordinates can be calculated. 
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However, if the image of a specimen has been digitized it has already been subdivided into a series of 
topologically homologous coordinate points — the pixel grid (Fig. 3). ! !

!  !!
Figure 3. Three example representation of ladybird beetle morphology and ornamentation pattern with a 
superposed 14 x 14 pixel grid. !

These pixel locations represent a set of semilandmarks that exhibit a consistent spatial structure across the 
entire set of forms. So long as the dimensions and resolution of this grid remain constant for all images in the 
sample, and so long as the specimens are oriented in the grid in some reasonably consistent manner, this 
grid can be used to extract comparable descriptions of their form geometries. Quantitative descriptions of 
specimen variation extracted in this manner can be organized into many formats. If only the outline of the 
form is needed all pixels whose colour or grey level differs from that of the background can be assigned the 
same colour (usually black or white depending on the background).   If colour is not a parameter of interest 1

the grid can be set to sample only the grey-level values of the individual pixels comprizing the image. If 
colour is of interest the sampling grid can be used to extract the red, blue, and green (RGB) values of each 
pixel. Figure 4 illustrates the effect of various grid sampling decisions on the representation of the first of the 
three ladybird beetle forms illustrated in Figure 3. !

!  !
Figure 4. Ladybird beetle morphology represented as four different pixel grid sampling resolutions and 
three different colour formats: 8-bit RGB values (upper row), 8-bit greyscale values (middle row), and 
binary (1-bit) values (bottom row). Note fidelity with which detail is retained even at low spatial 
resolutions. !

What is remarkable about this comparison of sampling resolutions and colour formats is the level of form and 
texture information content that’s retained even at relatively low sampling resolutions. This suggests that, for 
the purpose of form and texture characterization, many pixels in a normal-resolution image (e.g., 72 pixels 
per inch) are redundant: the value of any particular pixel is much the same as the values of the pixels 

�  In this case the data would be more efficiently represented as a set of boundary outline semilandmark coordinates 1

rather than a coordinate sampling grid.
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immediately adjacent. In mathematical jargon this self-similarity is termed spatial autocorrelation. If possible 
the spatial autocorrelation of our raw morphological data should be reduced prior to during data analysis so 
that the effective dimensionality of the data-analysis problem can be optimized. But can we accomplish this 
reduction in the context of a digital image?  !
As an initial step we can decrease the image resolution to the point where the number of self-similar pixels is 
minimized relative to the overall information content of the pixel grid. While there are algorithmic ways of 
accomplishing this minimization, for biological images I recommend adoption of an experimental approach to 
determining the spatial resolution and colour format required for each analysis on a case-by-case basis. This 
recommendation reflects my belief that the analyst (or taxonomic specialist), rather than an algorithm, is 
usually best placed to determine which morphological features need to be included in an image to ensure the 
down-sampled image set remains appropriate for the hypothesis test(s) under consideration. !
Once the spatial and colour resolution necessary to represent the set of images have been established it is a 
simple matter to assemble the resultant pixel brightness or colour values into a mathematical description of 
the specimen. This is done by rearranging the matrix of pixel values into a single row of values in a standard 
data matrix. Each of the pixels, then, becomes a variable and the colour or greyscale data the values of 
those variables. Since each of the images processed in this manner is composed of the same number of 
variables (pixels), since each variable has a constant spatial relation to every other variable, and since the 
values each of these variables can adopt are of the same type and range of magnitudes, collectively these 
variables (pixels) form a mathematical space within which each of the specimens comprizing the sample can 
be located. Specimens whose form, colour, and blotch patterns are similar will lie close to each other in this 
space while those whose morphological attributes are distinct will lie at some remove from one another. This 
is precisely the same sort of inter-specimen representation we achieve in a linear distance, landmark, or 
semilandmark-based analysis. Nonetheless, by using pixel values as our variables rather than coordinate 
point locations we are preserving as much of the total morphological content of each image (and so each 
specimen) as possible as well as avoiding having to make any decisions about what aspect(s) of the 
morphology may, or may not, be important for resolving the problem at hand at the outset of an analysis. !
This is quite a flexible approach to the analysis of biological specimen morphology as well as one that 
incorporates many of the data-analysis features we’ve been discussing in the context of different 
morphometric data types. The conceptual link to outline and 3D surface analysis seems straight forward. But 
even in the context of traditional forms of landmark analysis all we’re really doing is changing our focus from 
the location of a small number of points (implicitly) embedded in a coordinate system to that of the total 
information content of the coordinate system itself. The price we’re paying for this change of focus involves 
having to deal with a much larger number of variables than would be the case in traditional landmark and 
semilandmark analyses. But the benefit is that we are able to include much more morphological information 
that might be relevant to the questions we are asking than would be the case otherwise. !
To illustrate this procedure let’s take the set of ladybird beetle images in Figure 2 and ask whether this 
sample represents a continuously variable set of colour morphs (the null hypothesis) or whether we have two 
basic types of beetles here: orange beetles with black spots and black beetles with orange or red spots (the 
alternative hypothesis). Using a strictly Gestalt assessment of these morphologies I’ll posit that the sample 
can be subdivided into orange and black colour morphs as listed in Table 1. Within this classification 
specimens 5 and 6 in row 2 of Figure 2 appear close to the intermediate condition between the two groups 
with the former being slightly more orange and the latter slightly more black. However, whether the boundary 
between these putative groups is gradational or disjunct within this sample I have no idea.  !

  !
Before reading any further you might like to consider Figure 2 yourself and come to your own preliminary 
conclusion as to whether the null or alternative hypothesis is more likely to be correct. It’s not as easy at it 
you might think. !

Table 1. Putative ladybird beetle colour morph 
assignments (by row and specimen no.).

Orange Morphs Black Morphs

1-1 
1-2 
1-3 
1-4 
2-1 
2-2

2-3 
2-4 
2-5 
3-1 
3-2 
3-3

1-5 
1-6 
1-7 
1-8 
2-6 
2-7

2-8 
3-4 
3-5 
3-6 
3-7 
3-8
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!  !
Figure 5. Resampled of 24 ladybird beetle (Family Coccinellidae) drawings (see Fig. 2) using a 32 x 32 colour (RGB) pixel grid. This 
resampling protocol reduced each specimen’s pixel number by c. 80% will little loss in the spatial resolution of features necessary for 
characterizing patterns of morphological variation. !
In preparation for our analysis we can reduce the spatial resolutions of the images that comprise Figure 2 
from 150 x 150 pixels to 32 x 32 pixels (Fig. 5). From inspection of the plate of beetle images at this reduced 
level of resolution you can see that, despite the fact that we’ve decreased the total number of pixels 
representing each specimen by 95 percent, these lower resolution images preserve virtually all features of 
the specimens observable in the original image set. Thus, this operation has reduced the number of 
variables required to represent our specimens (= reduced their dimensionality) by preferentially eliminating 
redundant pixels (= reduced spatial autocorrelation) while suffering only a very minor loss of information 
content. So far, so good. !
Since these are colour images, and since, in this case we do want to include an assessment of colour 
variation in our dataset, each specimen’s image can be described completely by converting the pixel format 
to a 32 x 32 matrix of red, green, and blue (RGB) colour intensity values; an operation that results in the 
specification of 32 x 32 x 3, or 3,702 variables. This is a large and somewhat awkward dataset insofar as we 
have many more variables than specimens. However, it’s a dataset we can work with and such skewed data 
matrices are by no means uncommon either in data analysis generally or morphometric data analysis in 
particular. !
A covariance-based principal component analysis (PCA) of these images shows that 95 percent of the 
observed form, colour, and texture variation can be represented on 18 orthogonal components or axes of 
variation. This operation further reduces the effective dimensionality of our measurement system from 3,702 
variables to 18 (a reduction of 99.5%). This operation also drops the number of variables down below the 
number of specimens in our dataset. The number of specimens in a morphometric dataset represents an 
important “curse of dimensionality” threshold (see Bellman 1957; MacLeod, 2007, Mitteröcker and Bookstein 
2011) of which I’ll have more to say below. !
We can have a look at this principal component space to see what it tells us about the major features of 
variation within our sample (Fig. 6). The first two principal components (Fig. 6A) account for the largest single 
share of observed form, colour, and texture variation (37.44%). But variation in this sample is such that these 
axes portray a minor share of the sample’s variation overall. The distribution of the images in this subspace 
suggests that there’s more going on within this sample than just the simple black-orange distinction that 
seemed ‘obvious’ to me after a cursory inspection of Figure 2. Broad-scale clustering of the two putative 
colour morphs is evident in this plot, but the distinction between them involves both PC axes. Moreover, the 
character of the inter-morph boundary is not well defined. While the ordination of the orange morphs within 
this plane appears relatively gradational, the ordination of the black morphs appears highly structured.  !
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!  !
Figure 6. Distribution of ladybird beetle form and colour texture similarity and difference relations on the first three principal component 
axes of the image covariance matrix. Black icons = putative black beetle morphs. A. The subspace formed by PC-1 (x-axis) and PC-2 
(y-axis). B. The subspace formed by PC-3 (x-axis) and PC-2 (y-axis). Note the comparative lack of specimens that project to positions 
along the principal component axes. Lack of of the empirical definition of axis form trends that might be afforded by such specimens 
makes it quite difficult to arrive at detailed geometric interpretations of the overall form space. See text for discussion.  !
Casual, qualitative inspection of this ordination pattern suggests that the black morph comes in two varieties: 
a black body with orange spots (the subgroup that plots toward the low end of PC-1) and a black body with 
red spots (the subgroup that plots toward the high end of PC-1). Thus, the main distinction within this sample 
appears to be that between orange beetles and red spotted beetles rather than orange and black beetles. 
The orange-black distinction that appeared so striking to me is reflected predominantly in the ordination of 
specimens along PC-2 along which the former exhibit low scores and the latter high scores. Also, along this 
axis the putative black morphs appear to exhibit a more-or-less unified distribution whereas the putative 
orange morphs comes in two varieties, a large group of bright orange and dusky orange morphs with much 
smaller black spots and a smaller group of morphs in which the black spots have coalesced to the extent that 
the total number of black and bright/dusky orange pixels is subequal (specimens 2-5 and 3-2). If we add PC3 
into our assessment (Fig. 6B) this interpretation does not change greatly. Along the PC-3 axis there appears 
to a distinction between bright orange (low PC-3 scores) and dusky orange (high PC-3 scores) morphs, at 
least along the lower reaches of PC-2. !
Given the complex character of image variation within this space detailed interpretations of these axes are 
surprisingly difficult to devise. We’ve seen this before with different types of data. But for these images the 
situation is decidedly more complex owing, no doubt, to the large number of original variables we’re dealing 
with. Using qualitative ‘eyeball’ methods to interpret these axes the best we can do is compare and contrast 
images that lie at the extremes of variation along each axis and hope that these represent all, or at least the 
majority, of the contrasts controlling each specimen’s placement. This is a particularly hazardous interpretive 
strategy to follow, especially when the distribution of forms in this space does not include many that lie close 
to the actual traces of the PC axes, as it is here for PC-1, PC-2 and PC-3. In such cases it’s far better to 
calculate models of the image variation at specific positions along any axis you might want to interpret and 
base your interpretations on those models. Such models can be calculated in precisely the same manner as 
we have been calculating them for other data types (see MacLeod 2009, 2012, 2013) Along-axis image 
models for the first three principal components of the ladybird analysis are shown in Figure 7. !
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!  !
Figure 7. Image models for the ladybird beetle dataset calculated along at equally spaced 
coordinates along the first three principal component axes. See text for discussion. Numbers on 
parentheses refer to the coordinate positions at which each image model was calculated (see Fig. 
6). !

Inspection of these models clarify interpretation of the major modes of variation in our dataset immensely. 
Here we can see that PC-1 actually captures the distinction between orange morphs with numerous small 
black spots (extreme negative scores), through dusky orange morphs with larger black spots, to a median 
region in which forms composed of subequal black and dusky orange regions occur and on to morphs 
characterized by a predominantly black body with a single pair of large red spots on the elytra and margins of 
the thoracic shield (extreme positive scores). The second PC axis is subtly different in that it contrasts bright 
orange morphs with a smaller number of larger black spots (extreme negative scores), passes through a 
median region composed of dusky orange morphs with small black spots and on to forms characterized by 
black bodies with four symmetrically placed red spots on the elytra, the anterior of which have black spots in 
their centres, and elongate red spots at the margins of their thoracic shields (extreme positive scores). 
Finally, PC-3 captures the distinction between forms characterized by black bodies with large, elongate 
orange spots whose axes are at right angles to the beetles’ anterio-posterior axis of symmetry (extreme 
negative scores), through a median region characterized by dusky orange morphs with black spots, and on 
to a region characterized by forms with black bodies and dusky orange stripes formed from the progressive 
amalgamation of orange spots (extreme positive scores). Close inspection of the PC-3 model set also 
reveals that, during the course of the transition from high negative to high positive scores a black band along 
the medial elytral margin changes colour and becomes orange. If we had not had access to these 
hypothetical image models to use as precisely located points of reference and comparison it is very doubtful 
that such a detailed interpretation of the major dimensions of form variation could be deduced from a simple 
inspection of the actual specimen ordinations alone. !
Although calculation of along-axis shape models allows more detailed and useful interpretations of the PC 
ordination space to be made, the interpretations offered above remain only semi-quantitative insofar as 
comparisons between the models calculated along each axis were done by eye. An even more complete and 
nuanced picture of similarities of differences among these models can be assembled by calculating 
difference maps of comparisons between these models (Fig. 7). !
Difference maps compare the (in this case) RGB values of corresponding pixel locations across two or more 
images and assign a colour to the mapped pixel whose hue is based on the amount of change recorded at 
the individual pixel locations. Typically these maps employ a temperature metaphor to express these results 
visually. Under this convention regions of the image characterized by little of no change are signified by blue 
(= cool) and regions characterized by high levels of change by (progressively) yellow, orange, and red (= 
hot). This type of representation has the advantage of being more objective, quantified, and detailed 
assessment of observed changes than the qualitative inspection of image differences. However, it should be 
remembered that there is no simple relation between the absolute amount of pixel value change at any 
particular location and the biological significance of that change. The strength of the difference map 
approach is that the maps draw our attention on particular aspects of form comparisons, or regions of form 
change, that might be overlooked as our eyes try to process and pick out consistent patterns or trends in the 
image model results. Difference maps can be used either in an exploratory sense (e.g., to identify regions of 
high or low that we might want to pay special attention to in subsequent analyses) or as a means of testing 
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specific hypotheses (e.g., if a generative hypothesis predicts that some sort of change will be localized in 
particular regions of the form), but should (almost) never be used on their own to interpret the biological 
significance of the form changes they record. !

!  !
Figure 8. Along-axis image model difference maps for the first three sets of principal component axis models (see Fig. 7). This plots summarize regions of 
the image at which the different proportions of change in pixel colour values are taking place as one moves along each of the principal component axes. In 
these plots the individual pixels have been colour coded as follows: blue = no change, white = moderate change, yellow = moderately high change, orange 
= high change, red = very high change. Note how different PC axes summarize changes in different regions of the form. !
When the difference map approach is used to compare differences between extreme low and high score 
ladybird beetle models in each of the along-axis sequences (Fig. 8) they do pick out unique aspects of 
variation that were not readily apparent in the qualitative inspection of the models shown in Figure 7. For 
example, there appears to be a general broadening of the elytra and thoracic shields along PC-1 with elytral 
colour pattern variation differentially occurring in the posterior portion of the form. Along PC-2 this broadening 
is confined to the middle part of the elytra with substantial colour pattern variation occurring in the anterior 
elytral region. along PC-3 moderate modes of colour pattern variation occur across the elytra accompanied 
by a slight concentration in the posterior portion of the thoracic shield. However, the predominant mode of 
form variation expressed along this axis is a slight lengthening of the body that appears to be on the order of 
2-3 pixels in aspect. !
And what of our original question regarding the distinctness of orange and black morphs? Figure 6C 
suggests (weakly) that the character of this transition might be gradational. However, just looking at a few 
planes through the original 18-dimensional PC space is insufficient for determining the actual degree of 
separation between these morphs. If a separation between groups can be located along any of these axes, 
either singly or when employed in combination, the groups are separable. Since we have neither the time, 
patience, nor software to visually inspect all possible geometries of points in an 18-dimensional space, some 
other procedure must be used to settle this question. !
Here though we run into a bit of a minor, but current, controversy among morphometricians. The classic way 
to handle this problem would be to subject either the raw data or a reduced set of PC scores to a 
discriminant analysis procedure such a canonical variates analysis (CVA). As I’ve pointed out before 
(MacLeod 2009), CVA takes a multivariate dataset and performs a series of standardized axis rotations and 
transformations that result in the data for two or more groups being projected into a multivariate space in 
which each group centroid is maximally separated from every other group centroid relative to within-group 
dispersions. This method cannot usually be applied to raw or Procrustes-aligned morphometric data because 
of computational difficulties that arise when attempting to invert the within-groups covariance matrix. 
Nevertheless, these difficulties can be solved (usually) by taking the raw data through an initial PCA and 
discarding the component axes that represent a statistically or biologically insignificant proportion of the 
observed form variation.  !
This procedure has recently been criticised by Mitteröcker and Bookstein (2011) as unsuitable for 
morphometric data analyses for the following reasons. !

1. Orientations of the CV axes are not orthogonal to each other in the space of the original variables 
used to calculate the CVA; as a result true Euclidean and/or Procrustes distances between specimens 
are not represented faithfully in the CVA ordination space. 
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2. If the number of variables greatly exceeds the number of specimens comprising a dataset CVA will 
always be able to find a linear combinations of variables that separates groups even in cases of 
artificially generated data drawn from the same multivariate normal distribution.   2

3. The scores of objects projected into the CV space do not represent a linear transformation of the 
original variables, but a linear transformation of these variables after they have been transformed into 
a distorted space formed by an operation that renders the within-group covariance matrices spherical. 
Thus, modes of shape variation that optimally separate groups are difficult to interpret and difficult to 
model properly. 

4. Canonical variate results are sensitive to the number and scaling of the variables used in their 
calculation. !

As an alternative, Mitteröcker and Bookstein (2011) advocate use of a ‘between groups PCA’ in which the 
group means are used to determine the orientations of a set of eigenvector axes and the data comprising the 
sample projected into this group mean-determined PCA ordination space. !
Certainly the between-groups PCA (BG-PCA) is a simple procedure that does have the advantage of 
preserving true Euclidean and Procrustes distances more faithfully — though not exactly — in the ordination 
space than a typical CVA would. On the one hand, for datasets in which the number of objects exceeds the 
number of variables, BG-PCA will, in most cases, produce a result that is suboptimal in terms of group 
centroid separation within its discriminant space relative to the discriminant space calculated as the result of 
a normal CVA. On the other, for datasets in which the number of variables greatly exceeds the number of 
objects a CVA may paint a misleading picture of the true degree of between-groups difference. Both 
approaches are compromised by the curse of dimensionality, but in different ways. Conducting a preliminary 
PCA in either case will reduce the influence of this curse and allow more of the original data collected to 
participate in the analysis. As for the ability of CVA results to be interpreted and modelled, MacLeod (2009) 
reviewed procedures for projecting CVA axes (or any group-separation trajectories specified in the CVA 
space) back into the space of the original variables and MacLeod (2011) presented procedures for modelling 
the results of this projection in the PCA space. These projection and modelling procedures are (slightly) more 
complex for a CVA than for a BG-PCA, but not seriously so. !
From my personal point of view both procedures have their merits and their limitations. If the purpose is to 
achieve an optimal group assignment decision or to test hypotheses concerning a morphological distinctions 
referenced to an optimal between-groups discrimination space, and if the size of the sample is large relative 
to the number of variables being used to define the discriminant analysis, a CVA analysis of PCA scores 
should return an appropriately robust result. Alternatively, if the purpose is to achieve between-groups 
discrimination while preserving a high degree of correspondence in the ordination result to the fundamental 
Euclidean or Procrustes character of the data, and/or if the size of the sample is small relative to the number 
of variables being used to define the discriminant analysis, a BG-PCA should return an acceptable result. 
Since both methods are reasonably easy to calculate, prudence suggests that both approaches be utilized 
and their results compared for agreement. !
As my original orange morph vs. black morph hypothesis involves only two groups a single discriminant axis 
will suffice for testing our hypothesis. Figure 9 presents results of both a BG-PCA and CVA in the form of 
frequency histograms of scores for the ladybird beetle image set projected onto their respective discriminant 
axes. !!

!  !
Figure 9. Discriminant analysis results for the distinction between orange and black ladybird beetle morphs. See text for discussion. 

!  This is an aspect of what I’ve referred to as the ‘curse of dimensionality’ and discussed in several columns in this 2

series.



�10

!
As expected, a standard CVA of the PCA scores produced the more definitive result with clear separation 
between these two putative beetle morphs. The BG-PCA result is consistent with that of the CVA result, but 
much less resolved. Indeed, if the BG-PCA result had been the only test used a distinction between orange 
and black morphs would be confirmed, but the character of the transition between them would have 
remained ambiguous. Perhaps the best way of conceptualizing the relation between these two results is that 
the BG-PCA result is what we would see if we could view the 18-dimensional PCA space in an orientation 
that best separated these two putative morphs whereas the CVA result (in this case) allows us to perform a 
similar operation and, at the same time, hold a mathematical magnifying glass up to the critical transition 
interval. A parametric Monte Carlo simulation test using hypothetical random datasets of the same size but 
identical means indicates that the curse of dimensionality has not played a significant role in the 
determination of either of the ordination results shown in Figure 9 (see MacLeod in press). !
Although these results do not ‘prove’ that ladybird beetles came in two varieties, they do show that, for the 
dataset illustrated in Figure 2, we can use the data encoded in digital images to test specific hypotheses 
regarding the character of variation within a morphologically complex sample of organisms even if we cannot 
reasonably specify the positions of relocatable landmarks or boundary outlines. This ‘image analysis’ 
technique is probably best used in an exploratory context, as a way of generating specific morphological 
hypotheses that can be tested using more normal landmark, outline, or landmark + outline approaches. 
Nevertheless, it represents a conceptual link between morphometrics and approaches to computer vision 
that may have widespread application across the biological sciences, and perhaps even further (see 
MacLeod et al. 2013). !
To give credit where credit is due I must admit to not being the first to come up with the idea of using digital 
images directly as input to a morphometric analysis. In researching this article I ran across a similar 
application, called ‘eigenfaces’, which is currently being used in biometric face recognition and cognitive 
neuroscience studies (see Sirovich and Kirby 1987, Turk and Pentland 1991a,b). The approach I outline 
above also shares certain historical similarities with the Digital Image Analysis System (DAISY) design for 
generalized semi-automated specimen identification systems (ONeill 2007). Owing to the obvious 
implications such technology has for the security and surveillance business sectors much primary research is 
being done on the general problem of automated object identification at the moment. While this technology 
has yet to make a substantial impact in the mainstream taxonomic and biological sciences, tantalizing 
glimpses of what these approaches might be capable of in the near future are available (see MacLeod 
2007). In addition, the need for the introduction of such systems into research programmes that rely on rapid, 
accurate, and consistent taxonomic identifications is becoming more widely recognised with each passing 
year (e.g., MacLeod et al. 2010, Culverhouse et al. 2013).  !
How can you experiment with this more direct form of image-based morphological analysis? It’s easier than 
you might think. Most of us are already used to working with digital images these days. Many commercial 
and public-domain image-processing software packages (e.g., Photoshop, Graphic Converter, Gimp) have 
the ability to change the spatial resolutions of digital images such that you can control the number rows and 
columns in the pixel grid. These same packages will also allow you to convert a colour image into its 
greyscale or binary equivalent and give you control over image exposure settings. Once your image set is in 
the correct format you’ll need a way of converting your images into ASCII datafiles. Older versions of 
Photoshop will do this as will Graphic Converter and Mathematica. Once you’ve converted your image files 
into greyscale or colour (RGB) brightness values all you need to do is reformat your image data matrices into 
a single row of values and assemble these into a standard data matrix in which the rows represent the 
specimens and the columns the pixel variables. This will typically be a large data matrix with many more 
columns than rows. Once your data are in this format any reputable PCA programme should be able to carry 
out the preliminary PCA analysis, though run times for very large datasets may be long. Secondary CVA or 
BG-PCA analysis can then be carried out on the preliminary PCA results as outlined above. All datasets and 
procedures used in this essay are available as Mathematica notebooks from myself. But all steps in the 
analysis can be performed by software available to anyone either free of charge of for a small licensing fee 
(depending on the type of computer you have access to). !
As this will be the last essay in the Palaeo-Math 101 series all that’s left to do is to thank the past three 
editors of the Palaeontological Association Newsletter — Phil Donoghue, Richard Twitchett, Al McGowran for 
their indulgence over the years of this column’s publication, to send a special thanks to Nick Stroud (the 
unseen force behind the newsletter) for his kind attention in laying out the column articles sympathetically 
and instituting the numerous last-minute edits to which I am prone, to acknowledge Mark Sutton’s support 
with regard to the pdf and web site versions of the articles, to thank the Palaeontological Association 
generally for creating a forum where a series on such an unusual subject might exist all, to thank all the 
people who have contacted me over the years with questions, corrections, extensions, queries, requests for 
advice, etc. about quantitative data analysis in the palaeontological and biological sciences as a result of 
these essays. Last but not least, I must thank you dear reader for taking the time to consider how 
quantitative forms of data analysis might be useful in your data-to-day research. Although this series has only 
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covered two aspects of palaeontological data analysis in any depth, I hope it’s demonstrated the power and 
utility of such approaches generally.  !
When I started this series in 2004 my goal was to write a small series of essays that would provide students 
post-docs, and young researchers with sort of practical, easy-to-follow discussions of the the ins and outs of 
palaeontological data analysis that I had often wished I had when I was just starting out in this field. I’ve 
enjoyed writing each of these columns immensely and, based on the many appreciative comments I’ve 
received over the years from readers like you, am content that I’ve reached that goal. It’s been time well 
spent. !!

Norman MacLeod 
The Natural History Museum 

N.MacLeod@nhm.ac.uk !!!!
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