FORAMINIFERAL BIOSTRATIGRAPHY OF THE OLIGOCENE-MIOCENE LIMESTONES OF CHRISTMAS ISLAND (INDIAN OCEAN) by C. G. ADAMS and D. J. BELFORD ABSTRACT. Foraminifera indicative of the Tertiary Lower e, Upper e, and Lower f 'Stages' of the East Indian Letter Classification are recognized in the post-Eocene limestones of Christmas Island. The local ranges of Spiroclypeus globulus Nuttall (here regarded as a junior synonym of S. margaritatus), Miogypsina neodispansa (Jones and Chapman), Lepidocyclina (Eulepidina) ephippioides (J. and C.), and L. (E.) andrewsiana (J. and C.)—for all of which this small island is the type area—are determined. Five faunal assemblages are recognized, and one new species, Heterostegina barriei, described. CHRISTMAS ISLAND lies almost 320 km south of Java and has an area of about 140 km². It is basically a truncated volcanic cone, capped with about 190 m of mainly flat-lying Cenozoic limestones, rising some 2450 m from the floor of the eastern part of the Indian Ocean. The island is heavily forested, the best natural exposures of limestone being in the steep inland cliffs. The area was active tectonically throughout Tertiary times, and the sedimentary succession is much affected by faulting. The geology was originally described by Andrews (1900), the only recent accounts being a paper by Trueman (1965) and an unpublished report by Barrie (1967) for the British Phosphate Commissioners. The Tertiary foraminifera of the island were first described by Jones and Chapman (in Andrews 1900) on the basis of 58 poorly localized rock samples which failed to yield a recognizable faunal sequence owing to the uncertainty of their stratigraphical relationships. However, a number of new species were described, the most important being Lepidocyclina (E.) andrewsiana, L. (E.) ephippioides, L. (E.) murrayana, L. insulaenatalis, and Orbitoides (Lepidocyclina) neodispansa; some of these names subsequently came into general use throughout the region. The main part of the limestone was thought to be of early Miocene age, but of the few samples which appeared to have been taken from at or near the base of the succession in the area of Flying Fish Cove, no. 595 contained planktonic foraminifera (including Orbulina) now known not to occur below Blow's zone N. 9 (approximately base of Lower f), while samples 924 and 220 yielded Miogypsina, a genus which appears first in strata of Upper e age in Indonesia. The faunas from these three samples therefore conflicted with the evidence for the age (Lower e) of the overlying beds. Nuttall (1926) revised the orbitoids with the aid of additional sections cut from Andrews's samples, and cleared up some of the confusion caused by the poor original descriptions. However, Tan (1936) noted that the published descriptions of Miogypsina neodispansa were still inadequate for the satisfactory establishment of its systematic position. Ludbrook (1965) described the fauna from 22 isolated samples collected from different parts of the island. Although Nuttall and Ludbrook both contributed to our knowledge of the faunas, neither had access to material which would have enabled them to solve [Palaeontology, Vol. 17, Part 3, 1974, pp. 475-506, pls. 71-74.] the basic stratigraphical problems. In 1965 Mr. J. M. Barrie, then with the Commonwealth Bureau of Mineral Resources, carried out a geological survey of the island for the British Phosphate Commissioners; material collected by him showed conclusively that the base of the 'Miocene' limestones was older than *insueta* Zone, but otherwise added little to our knowledge of the island's stratigraphy. One of us (D. J. B.) therefore visited the island in 1967 and collected more than 200 samples in stratigraphical order along the five traverses shown on text-fig. 1. Although the results presented here are based primarily on this material, all the previous collections have been re-examined and evaluated in interpreting the biostratigraphy. Of the three anomalous samples collected by Andrews and referred to earlier, that containing Orbulina (595) was undoubtedly obtained from one of the plankton-rich fissure infillings which occur in Flying Fish Cove. The occurrence of Miogypsina neodispansa in samples 220 and 924 is more difficult to explain. Mr. P. J. Barrett and Mr. D. A. Powell recently collected further material (G. 840; G. 852-860) from a poorly exposed yellowish limestone in contact with the basalt at the point where Andrews obtained rock no. 924. Nine of these samples yielded M. neodispansa; the fauna of the yellowish limestone cannot be traced laterally, and two samples collected immediately above (G. 861-862) contain a Lower e stage fauna. Mr. Barrett considers the yellowish limestone to be different from others in the area, and regards it as being formed also as a result of fracture filling, perhaps of a tension fracture which was gradually opening as the island underwent adjustment. This seems to be the only explanation for a younger limestone directly against the basalt with an older limestone at a higher level. It is unfortunate that the limestone occurs at the northern end of a fault zone where the succession is obscure. Sample 220 is probably from the same locality. Throughout this paper the East Indian Letter Stages are used in the sense of Adams (1970). Table 1 equates the Oligocene and early Miocene parts of this classification with the current European terminology. | Epoch | European
Stage | Letter
Stage | |-----------|-------------------------|----------------------------------| | , M | Serravallian | f | | MIOCENE | Burdigalian Aquitanian | Upper e
(=es) | | CENE | Chattian | Lower e
(= e ₁₋₄) | | OLIGOCENE | Rupelian | d | | E | Lattorfian | c | TABLE 1. Approximate correlation of the mid-Tertiary Letter Stages with the conventional stage terminology of Europe. (Only part of the f stage is shown here.) TEXT-FIG. 1. Map of Christmas Island showing principal traverses and other important sample localities. ## LITHOLOGY, STRATIGRAPHY, AND FAUNAL SUCCESSION The greater part of the succession is made up of foraminiferal and algal debris in a matrix of carbonate mud. Molluscs, corals, and coral debris are present in many samples, but only in 'G' Traverse is there direct evidence for a coral reef. The limestone contains few planktonic foraminifera except in fissure infillings. Assemblages of miliolids and peneroplids known to be characteristic of shallow-water sheltered environments (e.g. lagoons) occur at many levels, whereas foraminifera believed to be typical of higher energy environments are virtually restricted to Assemblage 1. The post-Eocene limestones are seen to rest on basalt or tuff wherever they are exposed, although the contact is usually obscure; in some places it is certainly a fault plane but in others may be an erosion surface with a limestone breccia or conglomerate above. In the traverses detailed below, the base of the limestone rests on basalt. Some traverses have been named after localities in which they occur; others are differentiated by letters assigned by Barrie (1967). The discontinuity of sample numbers in the traverses resulted either from difficulty of access, particularly in 'D' Traverse, so that several visits were necessary at different times, or from further collecting in order to check particular parts of traverses after preliminary examination of samples on the island. On discovering that the faunal sequence was difficult to interpret, we decided to take no risks with the identification of species thought to be of age-diagnostic value. The distribution charts (text-figs. 3, 5, 7, 9, 10) are, therefore, more complex than usual. Whenever we have been unable to see the diagnostic characters of a species (a common situation when random thin sections of limestone are studied), we have recorded it simply as 'X' sp. Thus, in 'D' Traverse (text-fig. 3) we recognize Miogypsina (Miogypsinoides) bantamensis, M. (Miogypsinoides) complanata, M. (Miogypsinoides) cf. complanata, and M. (Miogypsinoides) sp. This, we believe, fairly reflects the difficulties encountered in distinguishing individual species when the critical characters vary in the degree to which they are visible. 'D' Traverse (text-fig. 2). A stream traverse on the north side of the island immediately south-west of Flying Fish Cove. Fifty samples were available from the south side of the stream and nine from the north side. A further 15 samples had been collected previously by Barrie. The sequence here has a vertical thickness of about 165 m. The lower part of the sequence is composed entirely of skeletal calcarenites and limestone breccias, the faunas of which show no signs of reworking. Above sample 1170 the limestones are calcarenitic micrites or true skeletal calcarenites. Calcareous algae are common throughout. The lowermost 73 m of rock contains a fauna which includes Lepidocyclina (Eulepidina) spp., Miogypsina (Miogypsinoides) bantamensis, Spiroclypeus margaritatus, Sorites cf. orbiculus, Borelis spp., and rare specimens of Austrotrillina striata. From about 122 m the hillside is covered with limestone boulders and basalt rubble, no exposure of solid rock being visible. Thin sections cut from several of the boulders revealed a fauna similar to that occurring at higher levels in the succession, and it seems probable that the rocks have fallen more than 45 m to their present positions. At about 114 m the sequence is faulted, about 4·5 m of Eocene limestone being introduced at this level. These Eocene beds are terminated abruptly by basalt, which TEXT-FIG. 2. Profile of 'D' Traverse | ีซ์
TRAVERSE | LEGENO P=Pessani X=Rore (<3 specimens) O=Few (5-10 =) | SAMPLE
NO. | 1349 | 1346 | 1347 | 1092 | 1180 | 17.8 | 1177 | 1176 | 1174 | 1173 | 1/11 | 6911 | 1168 | 1049 | 1046 | 1043 | 1041 | (336 | 1030 | 1031 | 1026 | 1357 | 9201 | 1025 | 998 | 1032 | 1334 | (333 | 1036 | 1332 | 1036 | 1036 | 1034 | 1080 | 1329 | 1328 |
-----------------|--|---------------|------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|------| | ACERVUS | INA, BORQDINIA, KANAKAIA | 50p | p | | PP | | PP | p p | p | P | P | p | | | P | • | | П | | | | | П | | P | | | | | | 1 | | | | 1 | | - | p | | CARPENT | ENIA, SPORADOTREMA APP | | | | | П | | | | | П | | | | | | | | | | p p | p | P | | p | - | P | , | | p | p | P | | P | | P | | P | | OPERCUL | WA se | _ | | П | | П | Τ | | | | П | | П | I | | | П | П | | | T | | П | | | , | | | | | | | | | | П | | | | LEPIDOCI | CLINA (E) up | | | П | | x | Τ | | | | × | x t | 2 | 1 | | × | × | | ×× | 0 | ×× | × | ×Χ | x x | П | | × | x > | 0 | × | c | | x | | ×× | × | ×× | •• | | CYCLOCL | PEUS OF EIDAE | | | | | П | Ι | | | | П | | П | | | | | Ш | | x | × | x | 1 1 | | Ц | 1 | | | | x | 1 | Ш | | Ш | | × | | 1 0 | | MILIOLIO. | 5 | | • | • | | | 0 | | | | × | • 0 | | 0 | • | 0 | 0 | 0 | | • | 0 | Ш | | | П | | | × | | Ш | | | | 0 | | 0 | 00 | 00 | | AMPHIST | EGINA 199 . | | | П | | П | Ι | | | | П | | | × | C | 0 | • (| 0 | C | | • | Ц | | | П | C | | | | Ш | 1 | | | П | | • | | •• | | GYPSINA | GLOBULA | _ | x > | x | ×× | × | × | ×× | | x | | ×× | 0 | | × | | П | | | | | | | | x | 1 | x | | | × | | | | П | | | | × | | BOREL/S | PYGMAEUS | | П | П | Т | П | × | П | П | П | × | T | П | Т | П | I | П | П | Т | П | × | П | x x | × | П | × | × | × | 0 | 0 | T | П | C | × | c | 0 | ×× | x O | | BORELIS | 100 | | × | П | Т | П | Т | П | П | × | | 0 | П | Т | x | Т | П | × | | П | | × | | | × | T | П | | Т | | 00 | 0 | × | П | × | П | × | × | | SORITES | ef ORBICULUS | | x | П | x | П | 0 | П | П | | П | Т | П | × | П | П | , | 0 | × | 0 | ×× | × | x | × | 0 | 00 | 0 | × | 0 | x | x s | | ×× | × | 00 | 0 | 00 | ×× | | HETEROS | STEGINA BARRIEI | | | ۰ | • | × | • • | ٠. | • | • 0 | • | ٠. | • | 0 | • | • | k | × | 7 1 | | T | П | П | | П | T | П | П | | | • | П | T | | | х | T | 2 | | NETEROS | TEGINA sp | | П | П | П | П | | | | | П | T | П | Т | П | Т | П | П | | П | | П | П | T | П | , | | | Г | П | T | П | П | П | П | П | Т | 0 | | SPIROCU | PEUS MARGARITATUS | | Ħ | T | Т | П | T | \Box | П | Т | П | T | П | | П | Т | П | Т | Т | | | | 00 | x x | | | 0 | 0 | 00 | 0 | c | | | | •• | | 00 | | | M (MIGGY | PSINOIDES) BANTAMENSIS | | П | T | Т | П | | П | П | T | П | T | П | T | П | Т | П | T | | × | | | 00 | C | | | 0 | 0 | | • | • | o | | 0 | 00 | 0 | . 0 | | | LEMBOCI | CLINA (E) EPHIPPIQIDES | | П | T | П | П | T | П | П | Т | П | T | П | Т | П | Т | П | p | П | П | Т | П | , | Т | × | × | П | П | T | П | 0 | × | c | | | 0 | × | | | LEPIDOC | YCLINA sp. (8 form) | | П | T | П | П | T | П | p | PP | p | p | П | р | П | p | P | P | | p | Т | П | П | Т | П | T | П | П | Т | П | p | Т | ١, | P | П | P | - | | | M (MIOG | YSINOIDES) et COMPLANAT. | A | Ħ | t | П | Ħ | T | Ħ | П | т | П | Ť | П | ١, | П | Ť | Ħ | T | Т | П | T | Ħ | T | , | | × | П | × | ١, | П | , | Т | , , | | Т | П | , | Ш | | SAROCLI | YEUS MARGARITATUS (BEDBULL | (S'type) | J, | | | | . x | | | | | ٠. | | | | | П | T | T | П | Т | Ħ | T | Т | П | T | П | П | Ť | П | | × | П | П | Т | П | T | | | AUSTROT | RILLINA STRIATA | | × | × | Ħ | 2 | T | Ħ | | T | Ħ | | П | T | Ħ | T | × | Т | × | 0 | Т | П | × | × | | T | П | П | × | П | T | T | П | П | П | П | T | | | GYPSINA | | | Ħ | Т | П | П | T | П | | | П | | П | | | | П | | | | | П | | | | × | П | П | T | П | T | T | П | П | П | П | T | | | LEPIDOCI | CLINA (N) sp | | П | T | П | П | T | П | Т | П | П | Т | П | T | П | T | П | , | П | П | x | 7 | Т | Т | П | T | П | П | T | П | T | Т | П | Т | П | П | T | | | 2,474,000,000 | PEUS III | | 0 | t | П | Ħ | T | I | T | I | П | T | П | Ť | П | T | П | Ť | Ħ | П | 0 | П | T | T | Ħ | Ť | Т | П | Ť | П | Ť | T | П | T | П | П | T | П | | | PSINOIDES) COMPLANATA | | Ħ | t | H | Ħ | | Ħ | t | H | Ħ | Ť | Ħ | T | Π, | | Ħ | T | П | П | | П | T | T | Ħ | 1 | T | Ħ | Ť | Ħ | Ť | t | П | T | П | П | T | П | | | PSINOIDES) III | | Ħ | t | Ħ | Ħ | | Ħ | t | , | | 1 | Ħ | Ť | П | 1 | Ħ | Ť | H | Ħ | | Ħ | T | | Ħ | 1 | t | Ħ | t | П | 1 | t | H | 1 | | Ħ | + | H | | | ASSEMBLAGE | _ | | + | - | 1 | - | - | - | - | - | 2- | - | + | - | + | - | + | - | - | | - | - | + | - | + | + | + | + | ۲ | + | + | - | + | - | - | + | - | TEXT-FIG. 3. Foraminiferal distribution chart for 'D' Traverse. See text-fig. 2 for sample order. produces a steep slope about 43 m high. The nature of the contact between the limestone and basalt is unknown. Immediately above the basalt the slope has been graded for the construction of a pilot washing and screening plant, and new 'C' grade calcination plant. The nearest continuous limestone exposure at this level is in a cliff about 10 m high beginning near Flying Fish Cove some 380 m to the north. This may be Andrews's locality 'at 500 feet running south from Flying Fish Cove'. If so, his sample 549 (containing *Borelis* and *Eulepidina*) must have been taken somewhere in this vicinity. The fauna in this small outcrop is dominated by *Heterostegina barriei* sp. nov. and *Spiroclypeus*; many of the foraminifera appear to be rolled and abraded. Barrie's sample D. 2 collected from the site of the washing and screening plant contains the same fauna, as do several samples collected between 189 and 195 m (i.e. just below the South Point Road). TEXT-FIG. 4. Profile of 'G' Traverse. 'G' Traverse (text-fig. 4). This, in effect, is a continuation of 'D' Traverse to the top of the island, but offset a little to the south. Twenty-seven samples were collected by TEXT-FIG. 5. Distribution chart for 'G' Traverse. See text-fig. 4 for sample order. Belford and seventeen by Barrie, through a vertical distance of 100 m. The succession is relatively well exposed between the railway line and the 'C' Grade access road, but is then rather poorly exposed up to the level of *M. dehaarti*. At higher levels the outcrop is fairly continuous. The lower and upper parts of the sequence are formed of skeletal calcarenites, but between 220 and 250 m corals and calcareous algae are well developed and may represent a true reef. The microfauna of the lower part of the section is characterized mainly by the presence of Sorites, Austrotrillina striata, and Spiroclypeus margaritatus. Eulepidina and Miogypsina (Miogypsinoides) are absent. At about 270 m there is a facies change and M. (Miogypsinoides) dehaarti occurs in abundance, accompanied by Carpenteria and Amphistegina. At this level the rock becomes a true foraminiferal coquina for the first time. The combined thicknesses of 'D' and 'G' Traverses total about 270 m, of which at least 4.5 m is Eocene limestone and 44 m basalt. Waterfall Traverse (text-fig. 6). Thirty-seven samples were collected by Belford and Barrie from about 161 m of strata exposed in this traverse on the eastern side of the island. The lithology is remarkably uniform throughout the traverse, the limestone consisting essentially of calcilutitic skeletal calcarenites. Six samples from the lowest 15 m yielded no species of age-diagnostic value. Heterostegina barriei appears in sample 1095 and continues up to the 121 m level (sample 1284). The upper part of the traverse is characterized by the occurrence of Tayamaia marianensis, a species which has not been found in situ on the western side. Miogypsina (Miogypsinoides) is fairly common throughout the section. A single specimen of Lepidocyclina in 1095 is clearly redeposited. The Waterfall Traverse thus seems to be equivalent to 'G' Traverse plus the top of 'D' Traverse (Eocene beds excluded) on the north-west side of the island. TEXT-FIG. 6. Profile of Waterfall Traverse. | RAVERSE | L(GEND) P= Present X=Reve (<3 specimens) O= Fev (3-10 -) • Common (II-25 -) = Abundon (>25 -) | SAMPLE | 1108 | 1011 | 908 | 9621 | 296 | 9011 | 294 | 104 | 1103 | 1102 | 1293 | 1101 | 1284 | 1000 | 282 | 285 | 1286 | 6601 | 1283 | 282 | 1098 | 1097 | 1322 | (32) | 9601 | 1323 | 67.5 | 1281 | 1279 | 1280 | 9501 | 0256 | 920 | 1324 | 1094 | 1093 | |-----------|--|--------|------|------|-----|------|-----|------|-----|-----|------|------|------|------|------|------|--------|--------|------|--------|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|-----|------|--------|------| | CARPENT | ERIA; SPORADOTREMA 100 | | | Þ | | | P | p | p | Р | r | | P | P | P | p | Р | P | P | P | р | Р | | P | Р | P | P | р | П | П | | | П | P | - | P | T | P | | AMPHIST | EGINA spp. | | | • | | | • | | | 0 | • | • | • | × | | | | × | T | | П | | | 0 | 0 | • | • | • | П | | | | | • | | 0 | T | | | OPSINA | GLOBULA . | | | | | | | | | | | | П | | × | × | П | - | | | х | | x | | | | | | | × | × | × | 0 | | | | 1 | П | | MILIOLID: | 9 | | | | ٠ | | × | | | | × | 0 | | 0 | x | | | | 0 | | x | × | x | 0 | | | 0 | 0 | П | • | • | • | | | | • | 0 | П | | BORELIS | NA. | | | | | | | | | × | | | П | | | | × | | | | | | П | × | П | | | | П | × | × | | | П | | × | T | Г | | SORITES | er ORBICULUS | | Г | Г | × | | × | П | × | 0 | | | П | | | | × | П | | | , | × | × | 0 | П | | × | × | × | × | | × | | | 7 | 0 | T | П | | M (MIDGY | PSINOIDES) DEHAARTI | | | | | • | | | | | | | | | | | | | | | | | | • | П | • | • | | П | | | | П | | | 0 | T | П | | MIMIOGY | PSINOIDES) et BANTAMENSI | 2 | | | | | П | | | | | | П | | | | | | | | | | | | | | | | 7 | | | | | | × | | T | | | ACETYUL | INA, BORODINIA, KANAKAIA | NA. | | P | | | P | | | | | | | | p | p | | | , | P | p | | | | | | | | | p | P | p | p | | | | T | П | | LEMODO | CLINA sp. (8 form) | | | | | | | | | | | | | | | | | | П | | | | | | | | | | | | Ι, | | × | | | | \Box | П | | SPIROCLY | PEUS MARGARITATUS (OLOBU | us) | |
 | | | | | | | | | | • | | | | х | | × | | × | | П | | | | П | • | • | • | × | | | | T | П | | | RILLINA STRIATA | | | | | | | | × | | | | | | | | 0 | П | | | | | × | | П | | | | | | × | × | × | П | | | T | П | | HETEROS | TEGINA BARRIEI | | | | | | | | | | | | | | × | х | | | П | | | X: | , | | П | | | | | • | • | • | • | | | | T | | | BORELIS | PYGMAEUS | | | | | | | | | 1 | | | | | | | | | | | П | | | | | | | | | × | | × | | | | | T | П | | M (MIOGN | PSINOIDES) of DEHAARTI | | | | | | 0 | | 0 | • | × | 0 | | | | | | | | | | | | | 0 | | | 0 | | | | П | | П | | | T | П | | SPIROCU | PEUS MARGARITATUS | | | | | J. | | | | | | | | | | x | × | × | × | × | x | × | 0 | | | | | | | | | | | | | | | П | | HETEROS | TEGINA W | | | | | | | | | | | | | | | | | | П | | x | | | | | | | | | | | | | | | | T | П | | TAYAMAIA | MARIANENSIS | | | • | | | | • | | | × | 0 | 0 | • | | П | | , | 1 | 7 | | | | | - 1 | | | | | | | | | П | | | 1 | | | LEPHDOCY | CLINA (N) sa | | | , | | | | | | | | | | | | | \neg | \neg | | \neg | | | | | | | | | | | | | | | | | $^{+}$ | Г | TEXT-FIG. 7. Foraminiferal distribution chart for Waterfall Traverse. See text-fig. 6 for sample order. Ross Hill Traverse (text-fig. 8). Sixty-one samples were collected by Belford and Trueman from the traverse, which covers about 200 m of limestone on the eastern side of the island. The twelve samples taken from the lowermost 91 m came from limestone blocks in basalt rubble and were not necessarily in situ, although their faunas suggest that they are not far out of position. The greater part of this sequence consists of fine- to coarse-grained skeletal calcarenites with varying amounts of calcilutite and secondary calcite. The small 'steps' in the profile above 130 m probably represent faults, and in this connection it should be noted that Miogypsina (Miogypsinoides) dehaarti occurs in sample 1304 only 6 m above M. (M.) complanata in 1303 (see p. 496). The lowermost 80 m is characterized by an association of Spiroclypeus and Heterostegina barriei. This is followed at 140 m (sample 1304) by Miogypsina (Miogypsinoides) dehaarti and at 164 m by Tayamaia marianensis. At 213 m (sample 1228) M. (Miogypsina) cf. neodispansa occurs. However, it disappears again 7.5 m higher in the sequence. Austrotrillina howchini occurs in sample 1317 (220 m) and continues almost to the top of the section, where Flosculinella bontangensis appears. A. howchini and F. bontangensis have not been seen in the same samples, and the latter has not been found associated with any other age-diagnostic species. Sydney's Dale Traverse. The 21 samples from this stream traverse on the western side of the island represent about 60 m of limestone consisting of limestone breccias and calcarenitic muds. The lower half of the sequence is quite well exposed and is represented by 16 samples, at least 4 of which (between 1244 and 1246, see TEXT-FIG. 9. Foraminiferal distribution chart for Ross Hill Traverse. See text-fig. 8 for sample order. | SYDNEY'S
DALE
TRAVERSE | LEGEND P= Present X= Rare (<3 specimens) O= Few (3-10 ") • Common (II-25 ") = Abundant(>25 ") | SAMPLE | 1136 | 1134 | 1133 | 1132 | 1130 | 1129 | 1128 | 1127 | 1246 | 1126 | 1125 | 1245 | 1124 | 1123 | 1122 | 1121 | 1120 | 6111 | 1244 | |------------------------------|---|--------| | CARPENT | ERIA, SPORADOTREMA SP | ρ | | | | Р | Р | Р | Р | Р | | | | | | P | Р | Р | Р | Р | P | | AMPHIS | TEGINA SPP | | | • | | | • | 0 | | | | | | | | × | 0 | | | | 0 | | OPERCU | LINA Sp. | | | | | | | | | × | | × | | | | | × | | | | × | | SORITES | cf. ORBICULUS | | | | | x | • | | | | | | | | | | | | × | 0 | x | | M.(MIOG | YPSINOIDES) ct. BANTAMEN | 1515 | | | | | | | × | × | | | | | | 0 | | | × | | 0 | | AUSTRO | TRILLINA STRIATA | | | | | | × | | | | | | | | | | | | | × | × | | M(MIOG) | PSINOIDES) DEHAARTI | | | | | | | | | | | | | | | • | | | 0 | | • | | TAYAMAI | A MARIANENSIS | | | | | × | | x | × | × | | | | | | | | | | | 0 | | DISCOCY | CLINA spp. | | | | | | | | | | × | × | | × | | | | | | | × | | "ROTALIA | " spp | | | | | | x | 0 | • | | | 0 | • | 0 | 0 | | • | | • | | | | BORELIS | spp. | | | | | 7 | | × | | | | | | | | | | | x | × | | | SPIROCL | YPEUS sp | | | | × | × | × | | × | × | | | | | | | | | Г | 0 | | | MILIOLIL | 05 | | | | | 0 | | | | • | | | | | | | | | | | | | GYPSINA | GLOBULA | | | × | | ? | x | × | × | × | • | × | x | • | • | | | 0 | × | | | | LEPIDOC | YCLINA (E.) sp | | | | | | | | | | | | | | | | 0 | | | | | | HETEROS | STEGINA ct. SAIPANENSIS | | | | | | | | | | | | 1 | × | 0 | | | | | | Т | | GYPSINA | DISCA | | | | | | | | | | | x | | | | | | | | | | | ACERVUL | INA; BORODINIA; KANAKAIA | ίρρ. | | | | Р | P. | Р | | P | | | | | | | | | | | | | LEPIDOC | YCLINA (N.) sp. | | | | | | | | | x | | | | | | | | | | | | | M. (MIOG | YPSINOIDES) of DEHAARTI | | | | | 0 | x | x | | x | | | | | | | | | | | | | M. (MIOG | YPSINA) cf. NEODISPANSA | | | | | | x | | x | | | | | | | | | | | | | | BORELIS | PYGMAEUS | | | | x | | x | x | | | | | | | | | | | | | | | M (MIOG | YPSINA) sp. | | | | | × | | x | | | | | | | | | | - | | | | TEXT-FIG. 10. Foraminiferal distribution chart for Sydney's Dale Traverse. Topographically highest sample on the left, lowest on the right. text-fig. 10) contain reworked Eocene foraminifera. These, however, are never numerous. The occurrence of *Miogypsina* (*Miogypsinoides*) dehaarti and *Tayamaia marianensis* in the lowest sample (1244) indicates that no part of the sequence is older than Assemblage 3. The frequency of occurrence of each species on the distribution charts (text-figs. 3, 5, 7, 9, 10) has been determined as the maximum number observed in any one thin section from a sample. Because of their large size, B forms of *Lepidocyclina* (*Eulepidina*) in the 'D' Traverse are recorded only as present. Encrusting genera are similarly treated since individual specimens tend to be badly fragmented, rendering counts meaningless. ## AGE OF THE FAUNAS Five faunal assemblages have been recognized within the post-Eocene limestones, Assemblages 1 and 2 probably being in part laterally equivalent (see below): - 1. Lepidocyclina (Eulepidina) ephippioides/M. (Miogypsinoides) bantamensis/Spiroclypeus margaritatus Assemblage. These species form the bulk of this Assemblage which is seen only in 'D' Traverse. Age: Lower e. - 2. Heterostegina barriei/Spiroclypeus margaritatus Assemblage. Well developed in 'D' Traverse and also seen in the Waterfall Traverse. Age: Lower e, on the presence of M. (Miogypsinoides) complanata in a few samples. - 3. M. (Miogypsinoides) dehaarti/Tayamaia marianensis Assemblage. Seen in the Waterfall and Ross Hill Traverses where it is well developed; also occurs in Sydney's Dale. Age: Upper e. - 4. *Miogypsina*/A. *howchini* Assemblage. Seen in stratigraphical sequence only in the Ross Hill Traverse, although isolated samples are known from the vicinity of Flying Fish Cove and Sydney's Dale. Age: Upper e. - 5. Austrotrillina howchini/Flosculinella bontangensis Assemblage. Believed to be restricted to a thin zone at the top of the succession and so far observed only in the upper part of the Ross Hill Traverse. Age: Lower f. These faunas tend to grade into one another and their constituent species are not necessarily mutually exclusive. Hence, M. (M.) bantamensis and Spiroclypeus margaritatus may be found in Assemblage 3, as may Austrotrillina howchini. Longranging species such as Gypsina globula (Reuss), Borelis pygmaeus Hanzawa, and Sorites cf. orbiculus (Forskål) occur throughout the greater part of the succession. The faunal sequence shows certain peculiarities. Occurrences of M. (Miogypsinoides) complanata in sample 64 (near Jedda Cave), samples 1302 and 1303 (Ross Hill Traverse), and D. 3 in the 'D' Traverse, either within or above the range of M. (M.) bantamensis, are anomalous. In each sample, all the numerous specimens of miogypsinids appear to have long nepionic spires, thus ruling out the possibility that we are dealing merely with a few reworked individuals. It might be argued that sample 64 has been raised to its present high position by faulting, but this explanation will not suffice for samples 1302 and 1303, sample D. 3, and 135B (Dolly Beach), in each of which M. (M.) complanata occurs with foraminifera typical of Assemblage 2. Although the oldest Tertiary e limestones appear to be those in the lower part of 'D' Traverse on the north-west side of the island, they have evidently reached their present position by faulting. They are nowhere seen immediately beneath the Assemblage 2 faunas in a continuous section. There is, therefore, a definite possibility that Assemblage 1 may be partly or entirely the lateral equivalent of Assemblage 2, the composition of the faunas reflecting differences in the local environment of deposition rather than any significant stratigraphical change. However, the occurrence of M. (M.) complanata with Spiroclypeus and Heterostegina barriei at Dolly Beach, Ross Hill, and in the 'D' Traverse strongly suggests that the lower part of Assemblage 2 is slightly older than the lowest beds yielding Assemblage 1 in 'D' Traverse. This interpretation would explain the occurrence of rolled and abraded specimens of Eulepidina (nearly always microspheric forms) in Assemblage 2, and the absence or rarity of encrusting genera in Assemblage 1. Lower e is now believed (Adams 1970) to be equivalent to the upper Oligocene (Chattian) of Europe, Upper e to the lower Miocene (Aquitanian and Burdigalian in the type areas), and Lower f to the early middle Miocene. The minimum thickness of post-Eocene limestone on the island (assuming that Assemblages 1 and 2 are laterally equivalent) is about 190 m. If they are not equivalent, the figure
increases to 265 m. In this connection, it may be noted that a borehole in the South Point area was abandoned while still in limestone at 244 m (pers. comm., D. A. Powell), whereas another hole (no. 14) on the plateau north-east of Smith Point reached basalt at 167 m. A stratigraphic bore ST. 1, Jones Spring, north of the Waterfall Traverse, passed through 23 m of Tertiary *e* limestone and 55.5 m of basalt before entering an upper Eocene (Tertiary *b*) limestone. ## SYSTEMATIC PALAEONTOLOGY The limestones of Christmas Island are rich in microfossils, which, unfortunately, have had to be examined mainly by means of random thin sections. Only a few oriented sections could be prepared owing to the difficulty of freeing individual specimens from the hard rock matrix. This rendered specific determinations difficult, especially for genera such as *Miogypsina*, *Cycloclypeus*, and *Lepidocyclina*, in all of which the nature of the embryonic apparatus is of critical importance. It is usually impossible to determine the range of variation of species seen only in random sections, since two or more species of the same genus may be present in the rock. For this reason no serious taxonomic revisions are attempted here. Synonymies are restricted to the original description, to previous records from Christmas Island and, where appropriate, to important recent redescriptions. Special mention must be made of the work of Jones and Chapman (1900). These authors based their descriptions on a very small number of thin sections (one or two per sample) and misinterpreted many of the specimens. Not only did they mistake Miogypsina (Miogypsinoides) for Heterostegina, and Miogypsina (Miogypsina) for Orbitoides (Lepidocyclina), but they failed to distinguish between specimens now referred to Spiroclypeus and Lepidocyclina. They also erected new species on shape and size alone, disregarding the possibility that these characters might be highly variable. Nuttall (1926), in revising the orbitoids, corrected most of their taxonomic errors. Figured specimens prefixed CPC are deposited in the Commonwealth Palaeontological Collection, Bureau of Mineral Resources, Canberra, Australia; those prefixed P are deposited in the Palaeontology Department, British Museum (Natural History), London, England. Thin sections representative of the samples referred to in this paper are deposited in both Canberra and London. Family MILIOLIDAE Ehrenberg, 1839 Genus AUSTROTRILLINA Parr, 1942 This genus was revised by Adams (1968) and nothing new can be added here. The commonly occurring species on Christmas Island is *A. striata*, but at high levels in the succession it is replaced by forms transitional to *A. howchini*. ## Austrotrillina howchini (Schlumberger) Plate 73, fig. 7 - 1893 Trillina howchini Schlumberger, p. 119, text-fig. 1, pl. 3, fig. 6. - 1968 Austrotrillina howchini (Schlumberger); Adams, p. 86, pl. 2, figs. 1-7; pl. 6, figs. 1-5, 7. Remarks. Associated with Miogypsina in the upper part of the Ross Hill Traverse. Ludbrook's record (1965, p. 291) of A. howchini in association with Flosculinella bontangensis was an error; these species have not been observed together either in the original slides from sample P. 33 or in material subsequently obtained from this locality. There is, however, no reason why A. howchini should not be found with F. bontangensis, since their ranges are known to overlap elsewhere in the region (e.g. Australia; Crespin 1955). All the individuals seen so far are fairly primitive forms lacking the greatly thickened wall so characteristic of the end members of the lineage. ## Austrotrillina striata Todd and Post Plate 73, fig. 6 - 1954 Austrotrillina striata Todd and Post, p. 555, pl. 198, fig. 9. - 1965 Austrotrillina howchini (Schlumberger); Ludbrook, p. 292, pl. 21, figs. 4-6. - 1968 Austrotrillina striata Todd and Post; Adams, p. 92, pl. 4, figs. 1-13; pl. 6, fig. 9. Remarks. A. striata occurs at intervals throughout the Tertiary e limestones. Its first occurrence is in sample 1334 ('D' Traverse); its last, in sample 1228 (Ross Hill Traverse). At higher levels it is replaced by fairly primitive forms of A. howchini. # Family SORITIDAE Ehrenberg, 1839 Genus SORITES Ehrenberg, 1839 Type species. Sorites dominicensis Ehrenberg = Nautilus orbiculus Forskål. # Sorites cf. orbiculus (Forskål) Plate 74, figs. 2, 10 - 1775 Nautilus orbiculus Forskål, p. 125. - 1965 Sorites martini (Verbeek); Ludbrook, pp. 290-292. - 1965 Sorites orbiculus (Forskål); Cole, p. 20, pl. 6, figs. 1-5, 7, 9; pl. 7, figs. 1-8, 10-12; pl. 8, figs. 7-9. - 1969 Sorites orbiculus (Forskål); Cole, p. C5, pl. 3, figs. 7, 8, 16; pl. 4, figs. 3-7. Remarks. This long-ranging species occurs throughout the entire Oligocene-Miocene sequence. It is never abundant, random sections usually showing one or two individuals only. Cole (1969) gave reasons for regarding this form as S. orbiculus rather than S. martini, the name applied by most previous authors to Tertiary e specimens. In the absence of good equatorial sections it is impossible to be certain that some specimens do not belong to S. marginalis (Lamarck). ## Genus MARGINOPORA Blainville, 1830 Type species. Marginopora vertebralis Blainville. ## Marginopora vertebralis Blainville Plate 74, fig. 11 1830 Marginopora vertebralis Blainville, p. 377. Remarks. Individuals referable to this species occur in a few samples from the upper part of the Ross Hill Traverse in Assemblages 3-5. Unfortunately, they are not numerous and no well oriented sections have been obtained. # Family ALVEOLINIDAE Ehrenberg, 1839 Genus BORELIS de Montfort, 1808 Type species. Nautilus melo var. B Fichtel and Moll, 1798. ## Borelis pygmaeus Hanzawa Plate 71, figs. 9-14 - 1900 Alveolina melo (Fichtel and Moll); Jones and Chapman, p. 255. - Borelis (Fasciolites) pygmaeus Hanzawa, p. 94, pl. 26, figs. 14 and 15. Borelis pygmaeus Hanzawa; Ludbrook, p. 292, pl. 21, figs. 7 and 8. Remarks. This well-known species is common in Assemblages 1 to 3. Small inflated forms of Borelis, very like the Recent B. pulchrus, also occur at some horizons and seem to grade into B. pygmaeus. Cole (1969) referred all such specimens from Midway to B. melo. However, the typical B. melo, from the middle Miocene of the Mediterranean region and the Middle East, is a strongly inflated form (usually higher than wide) which shows no axial thickening and tends to develop supplementary chamberlets (B. melo curdica). B. pulchrus and B. pygmaeus always show a tendency towards axial thickening, are rarely, if ever, higher than wide, and do not develop supplementary chamberlets. This is not the place, nor is the present material appropriate, for a #### EXPLANATION OF PLATE 71 - Figs. 1-4. Heterostegina barriei sp. nov. From 'D' Traverse; all × 60. 1, paratype A, CPC. 13734, median section, sample 1173. 2, paratype B, CPC. 13735, transverse section, sample 1180. 3, holotype, CPC. 13733, slightly oblique median section, sample 1168. 4, paratype C, CPC. 13736, median section, sample - Figs. 5-7. Heterostegina cf. borneensis van der Vlerk. All transverse sections, ×10. 5, CPC. 13737, oblique transverse section, sample G837, Flying Fish Cove. 6, CPC. 13738, transverse section, sample G838, - Flying Fish Cove. 7, CPC. 13739, transverse section, sample G837, Flying Fish Cove. Fig. 8. *Tayamaia marianensis* (Hanzawa), CPC. 13740, sample 1216, Ross Hill Traverse, × 30. - Figs. 9-14. Borelis pygmaeus Hanzawa. Specimens from 'D' Traverse showing variation in shell size and form. 9, CPC. 13741, sample 1356, off-centre, slightly oblique section, ×40. 10, CPC. 13742, sample 1334, slightly off-centre axial section, × 40. 11, CPC. 13743, sample 1334, slightly off-centre axial section, ×40. 12, CPC. 13744, sample 1037, axial section, ×48. 13, CPC. 13745, sample 1333, slightly off-centre axial section, ×40. 14, CPC. 13746, sample 1080, off-centre axial section, ×40. - Fig. 15. Borelis melo (Fichtel and Moll). Axial section P. 49087, from the Miocene of Turkey, ×50, introduced for comparison with B. pygmaeus. - Figs. 16–18. *Miogypsina (Miogypsina) neodispansa* (Jones and Chapman). All from Andrews's sample no. 220, south side of Flying Fish Cove. 16, P. 49088, transverse section, × 30. 17, P. 49089, oblique transverse section, ×24. 18, P. 49090, slightly oblique median section showing embryonic apparatus, ×30. ADAMS and BELFORD, Oligocene-Miocene foraminifera revision of the genus Borelis. We are therefore retaining Hanzawa's specific name, while drawing attention to the similarity between these specimens and the Recent B. pulchrus and B. pulchrus schlumbergeri. The difference between B. pulchrus schlumbergeri and B. melo is very well illustrated by Reiss and Gvirtzman (1966, pls. 1 and 2). ## Genus FLOSCULINELLA Schubert, 1910 Type species. Alveolinella bontangensis Rutten, 1913. ## Flosculinella bontangensis (Rutten) Plate 74, fig. 3 1913 Alveolinella bontangensis Rutten, p. 221, pl. 14, figs. 1-3. Flosculinella bontangensis (Rutten); Ludbrook, p. 292, pl. 21, fig. 13. Remarks. This species is known only from the uppermost beds in the Ross Hill Traverse. It has been found associated with Amphistegina, Sorites and encrusting genera. However, Austrotrillina howchini occurs at about the same level and is known to have co-existed with F. bontangensis elsewhere in the region. #### Flosculinella sp. Remarks. A single individual was seen in Barrie's sample 69F (Batu Merah, Flying Fish Cove). It is impossible to decide whether this specimen should be referred to F. reicheli Mohler or to F. globulosa (Rutten). However, its occurrence with an Assemblage 2 fauna almost certainly means that the genus can no longer be relied on to mark the base of Upper e. > Family NUMMULITIDAE Blainville, 1825 Subfamily CYCLOCLYPEINAE Butschli, 1880 Genus CYCLOCLYPEUS Carpenter, 1856 Type species. C. mammilatus Carter, 1861. ## Cycloclypeus cf. eidae Tan Sin Hok 1932 *Cycloclypeus eidae* Tan Sin Hok, p. 50, pl. 5, fig. 6;
pl. 12, figs. 2–3; pl. 13, fig. 2. 1965 *Cycloclypeus* cf. *eidae* Tan Sin Hok; Ludbrook, p. 291. Remarks. This species is rather rare. It occurs in a number of samples from 'D' Traverse (Assemblage 1); Ludbrook reported it from sample P. 52, Flying Fish Cove. # Genus HETEROSTEGINA d'Orbigny, 1826 Type species. H. depressa d'Orbigny. # Heterostegina barriei sp. nov. Plate 71, figs. 1-4 1900 Heterostegina depressa d'Orbigny; Jones and Chapman, pp. 244 and 252. Not p. 229, pl. 20, fig. 1. This species is named after Mr. J. M. Barrie, in whose samples it was first recognized. Description of holotype. Test small, with evolute primary chambers arranged in 3 rapidly expanding whorls. Proloculus and deuteroconch minute, followed by 5 operculine chambers. Secondary septa long, and well developed from their first appearance. No ornament visible. Dimensions. Diameter 1.0 mm (test incomplete). Internal diameter of proloculus 0.05 mm; external diameter of proloculus and second chamber 0.091 mm. Variation. Other specimens show that the diameter of the test ranges at least up to $2\cdot 1$ mm, although the flange is almost always broken. The number of operculine chambers ranges from 5 to 8, and the number of whorls from 3 to $3\frac{1}{2}$. Secondary septa are always long. Although no ornament has been observed, its presence cannot be entirely ruled out since small pustules do not always show up in random sections. Locality and horizon. Holotype from sample 1168, 'D' Traverse, at base of the limestone outcrop at this locality. This species is characteristic of Assemblage 2. Age: H. barriei appears to differ from all other described species of the genus in being unusually small (under 2 mm average diameter) and in having a very small embryonic apparatus followed by from 5 to 8 operculine chambers in the megalospheric form. It most closely resembles H. granulatestata subsp. praeformis Papp and Kupper from the middle Miocene of southern Europe, but is smaller and has long secondary septa only. H. suborbicularis d'Orbigny is the commonly reported Tertiary e species in the Indo-Pacific region, but this is involute and has very many more operculine chambers (cf. Cole 1969, pl. 3, figs. 1–5, 18). # Heterostegina cf. borneensis van der Vlerk, 1929 Plate 71, figs. 5-7 Remarks. Specimens probably referable to this species have been seen in a few samples (G. 837, G. 838, and G. 862) from Flying Fish Cove. They are two or three times the size of the largest specimens of *H. barriei*, and the two species have not been seen in association. A positive identification is, unfortunately, impossible in the absence of sections showing the embryonic apparatus and first whorl. # Genus OPERCULINA d'Orbigny, 1825 Remarks. Specimens occur at intervals throughout the succession. They are rarely numerous and appear to be specifically indeterminable in random sections. It is possible that more than one species is represented. ## Genus SPIROCLYPEUS Douvillé, 1905 Type species. S. orbitoideus Douvillé. At least eleven nominal species of this genus have been described from Tertiary e strata in the Indo-West Pacific region, and although attempts have been made to distinguish between them (e.g. Krijnen 1931), authors have found the greatest difficulty in naming specimens satisfactorily. It is undoubtedly significant that no one has yet described a succession in which even a few of these species have been shown to succeed one another in time, and as Cole (1969) has pointed out, several authors have found two or three so-called species in the same beds. Cole (1969) therefore assigned seven of the 'species' occurring in the Tertiary e rocks of the region to S. margaritatus (Schlumberger). Although first inspection of the present material suggested that several species were represented, closer examination indicated that transitional forms occur. This, together with the absence of any obvious pattern of stratigraphical distribution, strongly suggests that only one species is present despite the wide range of morphological variation. Spiroclypeus occurs abundantly only in 'D' Traverse. It is common at some levels in 'G' Traverse, but well-oriented individuals have not been seen. It occurs in four samples near the base of the Ross Hill Traverse, but except in 1302, specimens are rare and specifically indeterminable. It is also present in four samples from the succession in Sydney's Dale. ## Spiroclypeus margaritatus (Schlumberger) Plate 72, figs. 1-11 - 1900 Orbitoides (Lepidocyclina) sumatrensis Brady; Jones and Chapman, p. 244, pl. 20, fig. 6. - 902 Heterostegina margaritatus Schlumberger, p. 252, pl. 7, fig. 4. - 1926 Spiroclypeus globulus Nuttall, pp. 36, 37, pl. 5, figs. 5-7, text-fig. 1. - 1965 Spiroclypeus globulus Nuttall; Ludbrook, p. 291, pl. 22, fig. 3. - 1969 Spiroclypeus margaritatus (Schlumberger); Cole, p. C8, pl. 2, figs. 1–20; pl. 3, figs. 9–14, 19 (synonymy). Remarks. The highly inflated form (S. globulus of Nuttall) of this species is common to abundant throughout the upper part of 'D' Traverse (Assemblage 2). However, it is usually abraded and shows signs of having been rolled and redeposited. The flange is rarely preserved except in the thicker and stronger 'B' forms. It occurs also in Assemblage 2 at the base of the Ross Hill Traverse and in Assemblages 2 and 3 at Waterfall. The chief variation in the present material is in the strength of the ornament, the number of lateral layers, and the width of the walls between the lateral chambers. Some highly inflated forms, particularly those of the microspheric generation, seem to possess a single umbonal pillar (Pl. 72, fig. 4); however, this effect can also be produced by sections through thickened lateral walls (see Pl. 74, fig. 13). ## EXPLANATION OF PLATE 72 Figs. 1–11. Spiroclypeus margaritatus (Schlumberger). All except fig. 7 from 'D' Traverse. 1, CPC. 13747, sample 1172, off-centre transverse section through microspheric form, ×10. Note thick pseudo-pillars and compare with figs. 3 and 4. 2, CPC. 13748, sample 1177, typical transverse section through inflated form ('S. globulus' of Nuttall), ×20. Most individuals from Christmas Island are of this type. 3, CPC. 13749, sample 1171, oblique transverse section showing pseudo-pillars, ×10. Probably a microspheric form. 4, CPC. 13750, sample 1332, off-centre transverse section, probably through a microspheric form, ×10. Note the massive umbonal pseudo-pillar and compare with Lepidocyclina sp., Plate 74, fig. 13. 5, CPC. 13751, sample 1026, slightly off-centre transverse section through megalospheric form, ×20. 6, CPC. 13752, sample 1169, slightly off-centre transverse section through megalospheric form, ×20. A more typical shape for the species, but not common on Christmas Island. 7, CPC. 13753, sample 1302, Ross Hill Traverse, median section through megalospheric form, ×20. 8, CPC. 13754, sample 1172, transverse section, ×20. 9, CPC. 13755, sample 1332, median section, ×20. 10, CPC. 13756, sample 1036, median section, ×20. 11, CPC. 13757, sample 1079, median section, ×20. ADAMS and BELFORD, Oligocene-Miocene foraminifera The only differences between S. leupoldi and S. margaritatus seem to be the inflation of the test and the number of lateral layers. No differences can be seen in equatorial sections obtained from samples near the base and top of 'D' Traverse (1332-1177). # Family MIOGYPSINIDAE Vaughan, 1928 Genus MIOGYPSINA Sacco, 1893 Type species. Nummulites globulina Michelotti, 1841. Subgenus MIOGYPSINOIDES Yabe and Hanzawa, 1928 Type species. Miogypsina dehaartii van der Vlerk, 1924. ## Subgenus MIOGYPSINOIDES Yabe and Hanzawa, 1928 Plate 73, figs. 1-5 1900 Miogypsina complanata Schlumberger, p. 330, pl. 2, figs. 13-16. Miogypsinoides ubaghsi Tan Sin Hok, p. 48, pl. 1, figs. 1-7. Remarks. This primitive species is found at only four localities. It occurs in 1302 and 1303, Ross Hill Traverse (Assemblage 2); in Barrie's samples D. 3 from the 'D' Traverse and 135B above Dolly Beach (East Coast), each with an Assemblage 2 fauna; and it forms a true foraminiferal coquinite in Barrie's sample 64 near Jedda Cave in the centre of the island. Sample D. 3 is accurately located in the sequence; 64 and 135B are isolated samples which cannot at present be located relative to the local stratigraphical succession. Samples 1302 and 1303 are from a boulder-strewn slope and must be older than other samples collected from boulders occurring at lower levels along the same traverse. There are two possible explanations for this peculiar distribution. Either all rocks containing M. (M.) complanata are up-faulted relative to all those containing M. (M.) bantamensis or the ability to produce a long periembryonic spire had not been entirely lost by the time M. (M.) bantamensis evolved. The former explanation is considered to be the most likely since all the specimens seen in each sample appear to have the same grade of structure. Cole (1969) argued that because M. (M.) dehaarti, M. (M.) lateralis, M. (M.) ## EXPLANATION OF PLATE 73 Figs. 1-5. Miogypsina (Miogypsinoides) complanata Schlumberger. 1, CPC. 13758, Ross Hill Traverse, sample 1302, oblique median section through microspheric form, ×30. 2, CPC. 13759, Ross Hill Traverse, sample 1303, transverse section through megalospheric form, ×30. 3, CPC. 13760, Ross Hill Traverse, sample 1303, median section through megalospheric form, ×30. 4, CPC. 13761, 'D' Traverse (Barrie's sample D3), median section through megalospheric form, ×40. 5, CPC. 13762, same locality as 4, off-centre transverse section, ×40. Fig. 6. Austrotrillina striata Todd and Post, CPC. 13763, Ross Hill Traverse, sample 1303, off-centre transverse section. Fig. 7. Austrotrillina howchini (Schlumberger), CPC. 13764, Ross Hill Traverse, sample 1239, transverse section, ×50. Figs. 8-11. Miogypsina (Miogypsinoides) bantamensis Tan Sin Hok, all ×30. All from 'D' Traverse. 8, CPC. 13765, sample 1079, megalospheric form in median section. 9, CPC.
13766, sample 1334, off-centre transverse section. 10, CPC. 13767, sample 1079, transverse section of megalospheric form. 11, CPC. 13768, sample 1079, median section of megalospheric form. Figs. 12-14. Miogypsina (Miogypsinoides) dehaarti van der Vlerk. All from 'G' Traverse. 12, CPC. 13769, sample 1061, transverse section through megalospheric form, ×50. 13, CPC. 13770, sample 1059, median section through megalospheric form, ×30. 14, CPC. 13771, sample 1061, slightly oblique median section through megalospheric form, ×30. ADAMS and BELFORD, Oligocene-Miocene foraminifera mauretanicus, M. (M.) formosensis, and M. (M.) bantamensis could be shown to occur in association in one part of the region or another, only one species should be recognized. However, he failed to notice that the gradation is in time rather than in space. Hence, M. (M.) complanata is never found with M. (M.) dehaarti, whereas either (but not both) may occur with M. (M.) bantamensis. Variation. Nepionic spire long (16-23 chambers in the A form), test relatively small (up to 1·3 mm in maximum diameter), lateral walls nearly always thin. # Miogypsina (Miogypsinoides) bantamensis Tan Sin Hok Plate 73, figs. 8-11 1936 Miogypsinoides complanata (Schlumberger) forma bantamensis Tan Sin Hok, p. 48, pl. 1, fig. 13. 1940 Miogypsinoides lateralis Hanzawa, p. 783, pl. 39, figs. 10-14. Remarks. Cole (1969) has argued that M. (M.) bantamensis is a junior synonym of M. (M.) dehaarti and that the two cannot be distinguished in the drill holes on Midway Atoll. However, if the principle of nepionic acceleration is valid, M. (M.) bantamensis must be slightly older than M. (M.) dehaarti. This is supported by the stratigraphical distribution of these two species on Christmas Island. M. (M.) bantamensis is common in Assemblage 1 ('D' Traverse) and also occurs in Assemblage 3 (Ross Hill and Sydney's Dale), although the paucity of well-oriented individuals renders identification difficult in many samples. Present evidence suggests that the earliest representative of M. (Miogypsinoides) in the Indo-Pacific region (M. (M.) complanata) gradually underwent a shortening of the periembryonic spire leading to the condition seen in M. (M.) bantamensis. This process continued until individuals recognizable as M. (M.) dehaarti were produced. This shortening of the spire was accompanied at first by an increase in the number of equatorial chambers, thus producing a larger test, and later by an increase in the thickness of the lateral walls. The shortening of the spire may have been linked with an increase in the internal diameter (volume) of the proloculus. The evolutionary sequence is tabulated below: 3. M. (M.) dehaarti Upper e 2. M. (M.) bantamensis } 1. M. (M.) complanata Late Lower e As these changes in shell form were gradual and progressive, transitional forms occur between 1 and 2, and 2 and 3. However, M. (M.) complanata and M. (M.) dehaarti have never been found in natural association. Cole's evidence from Midway is not opposed to this hypothesis. His figured specimens show an overall increase in the length of the spire with age. Data from Cole (1969, pl. 1) Depth No. of chambers in spire (—) 595-600 ft 901-906 ft 926-927 ft Data from Cole (1969, pl. 1) No. of chambers in spire (—) figs. 3 and 4 (7); figs. 1, 11, and 12 (9) figs. 9 (10); fig. 20 (9+); fig. 8 is a microspheric form figs. 5 and 6 (10); figs. 13, 14, 16, and 17 (13); figs. 18 and 19 (12+) Hanzawa (1957) and others have attributed importance to the attitude of the embryonic chambers relative to the apex of the shell. However, this is determined by the length of the spire. Once median chambers have begun to form, the spire cannot be continued for more than half a turn (usually 7-9 chambers) without the typical fan shape being lost. Variation. Periembryonic spire of medium length and formed of 9 to 13 chambers. Internal diameter of the proloculus 0.133 to 0.150 mm (six measured specimens). Test up to 2.2 mm long and 0.76 mm thick; always longer than wide. Since this species evolved from M. (M.) complanata and into M. (M.) dehaarti, it follows that transitional forms occur and that an arbitrary specific diagnosis will not be satisfactory for the early and late representatives of the 'bantamensis' part of the ## Miogypsina (Miogypsinoides) dehaarti van der Vlerk Plate 73, figs. 12-14 1900 Heterostegina depressa d'Orbigny; Jones and Chapman, p. 257. Miogypsina dehaartii van der Vlerk, p. 429, text-figs. 1-3. Miogypsinoides dehaarti (van der Vlerk); Ludbrook, p. 293, pl. 21, figs. 9-11 and fig. 12 (part). Remarks. Little can be added to previous descriptions. In the present material the nepionic spire consists of from 7 to 10 chambers of which the last few are usually very small. The test is usually wider than long, and the lateral walls are well developed. The test ranges up to 1.2 mm in thickness; some specimens have a strongly pustulate appearance, others are smooth. This species forms a foraminiferal coquina in some samples (e.g. 1058, 1059, 1061, 'G' Traverse, and Andrews's no. 131, Flying Fish Cove); it is common in the Ross Hill and Waterfall sequences. M. (M.) dehaarti occurs in Assemblages 3 and 4. It overlaps and grades into M. (M.) bantamensis in the lower part of Assemblage 3, and overlaps with M. (Miogypsina) cf. neodispansa in Assemblage 4. Ludbrook (1965) figured an association of M. (M.) dehaarti and M. (Miogypsina) neodispansa. ## Miogypsina (Miogypsina) neodispansa (Jones and Chapman) Plate 71, figs. 16-18, text-fig. 11 1900 Orbitoides (Lepidocyclina) neodispansa Jones and Chapman, pp. 235, 240, pl. 20, figs. 3 and 4. Miogypsina neodispansa (Jones and Chapman); Nuttall, pp. 37, 38, pl. 5, fig. 4. Miogypsina neodispansa (Jones and Chapman); Ludbrook, p. 290, pl. 2, fig. 12 (part). Remarks. The original description of M. (M.) neodispansa is poor, and Nuttall's emendation little better since he gave no information about the nepionic spire, the one part of the test considered to be of diagnostic importance by modern workers. Examination of numerous random sections has revealed the following variation in test morphology: Size. The maximum diameter of the test ranges from 2 to 4 mm, and averages about 2.5 mm. The maximum thickness (1.6 mm in the type slides) is dependent on the number (6-12) of lateral chamber layers developed. Surface ornament. This varies from finely to coarsely pustulate. The maximum diameter of the pustules is about 250 μ m, but many individuals are ornamented with pustules not exceeding 50 μ m in diameter. Chamber shape and arrangement. The embryonic and median chambers do not always lie in the same plane, a feature which makes the preparation of oriented thin sections rather difficult. The median layer is composed of a few rhombic and many hexagonal chambers. This layer is not always flat, and wavy tests of the M. (M.) bifida and M. (M.) polymorpha types are quite common. *Embryonic apparatus.* The internal diameter of the protoconch in most specimens falls within the range 0.12-0.20 mm. However, one individual in a sample from South Point has an initial chamber with a diameter of 0.25 mm. The deuteroconch is usually TEXT-FIG. 11. Periembryonic spirals of three typical specimens of *Miogypsina neodispansa*. All from Andrews's sample 220, south side of Flying Fish Cove; (a) P. 49093, (b) P. 49092, (c) P. 49090. considerably larger than the protoconch. Two protoconchal spirals are clearly visible, and some individuals seem also to possess a third spire (text-fig. 11) but this is much less clear. The two primary auxiliary chambers are usually unequal in size; the larger chamber usually gives rise to a spire of three chambers while the smaller produces a shorter spire of two chambers. M. (M.) neodispansa was one of the first miogypsinids to be described from the Indo- West Pacific region, and as such is an important species. Its association with *M.* (*Miogypsinoides*) dehaarti and a fairly primitive form of Austrotrillina howchini fixes its position as Upper e, while the fact that it occurs fairly high in the succession (not very far below Flosculinella bontangensis) probably means that it is a late Upper e form. It is still impossible to state clearly how M. (M.) neodispansa differs from other described Indo-West Pacific species of the genus. Further data on the periembryonic and median chambers of this and other species are required, and these await the collection of better material. However, present evidence suggests that M. (M.) neodispansa is more highly evolved than M. (M.) thecideaeformis and M. (M.) globulina $(=M.\ (M.)\ kotoi)$ since both protoconchal spires are well developed and the median chambers appear to be markedly hexagonal. On the other hand, it is less advanced than M. (M.) indonesiensis which has subequal primary auxiliary chambers and median chambers that are hexagonal throughout. On the basis of individual specimens it would be possible to recognize four or five 'species' in the Christmas Island samples. M. (M.) neodispansa occurs in great abundance in three samples from different parts of the island (Flying Fish Cove, nos. 220 and 924; South Point area, K. 129). Specimens probably referable to this species occur in three samples from the upper part of the Ross Hill Traverse. ## Family LEPIDOCYCLINIDAE Scheffen, 1932 Genus LEPIDOCYCLINA Gümbel, 1870 Type species. Nummulites mantelli Morton 1833. Christmas Island is the type locality for six species of *Lepidocyclina*, five of which were erected by Jones and Chapman (1900) on the basis of a small number of random sections through fourteen samples of limestone. Nuttall (1926), after having additional sections cut from the same material, recognized the following species: *Lepidocyclina andrewsiana* (Jones and Chapman), *L. ephippioides* (J. and C.), *L. (E.) ?formosa* Schlumberger (= *L. murrayana* J. and C.), *L. chapmani* Nuttall, *L. inaequalis* J. and C., and *L. insulaenatalis* J. and C.
Ludbrook (1965) reported, but did not figure or describe, all six species from two samples (P. 132 and P. 52). None of these authors had access to material collected in stratigraphical order, and all used test shape and size as the basis for distinguishing between species; internal characters, although sometimes mentioned, were not used in a systematic manner. The present material shows that *Lepidocyclina* occurs mainly in the north-west of the island. The megalospheric form of *Eulepidina* occurs most commonly in the lowermost 250 feet of 'D' Traverse (Assemblage 1). There is one doubtful occurrence (1095) in the Waterfall Traverse (Assemblage 2), and numerous inflated 'A' forms (*E. andrewsiana* type) occur in sample 1122 (Assemblage 3, Sydney's Dale Traverse). Individuals present in the higher part of 'D' Traverse (Assemblage 2) are mainly microspheric forms of the *chapmani/insulaenatalis* type and show obvious signs (breakage and abrasion) of redeposition. Many are coated with calcareous algae. No recognizable megalospheric forms are seen above sample 1030, other than a single specimen in sample 1045 (from a rolled boulder). It is clear that *Eulepidina* is represented here by several types of test (flattened or disc-like; lenticular; saddle-shaped; and highly inflated with a flange), but so far as can be ascertained from random sections, gradation occurs between the different types. The fact that most of these can be found in two of the lowest samples (1328 and 1078) from 'D' Traverse, and that no type is restricted to a definite stratigraphical interval, probably mean that this diversity of form reflects variation within a single species. However, Andrews's sample 827 from 3 km south of Flying Fish Cove and four of Belford's samples from Smith Point contain a few inflated megalospheric forms which must be referred to *L. (E.) andrewsiana*, pending further investigation. Unfortunately, the associated foraminifera in these five samples are undiagnostic and could represent either Assemblage 1 or Assemblage 2. The subgenus *Eulepidina* is in need of revision. The specific characters on which the numerous nominal species have been based need to be evaluated statistically on the basis of matrix-free material. Until this has been done it will not be possible to name specimens occurring in hard limestones satisfactorily. LEPIDOCYCLINA (EULEPIDINA) H. Douvillé, 1911 Type species. Orbitoides dilatata Michelotti, 1861. Lepidocyclina (Eulepidina) andrewsiana (Jones and Chapman) Plate 74, figs. 7-8 1900 Orbitoides (Lepidocyclina) andrewsiana Jones and Chapman, p. 255, pl. 21, fig. 14. Remarks. The specimens referred to this species occur in four samples from Smith Point (1257, 1258, 1262, 1263) and one (827, the type sample) from the base of a limestone cliff resting on basalt at 150 m, 3 km south of Flying Fish Cove. They appear to differ from E. ephippioides in being more inflated and in tending to develop very thick walls between the lateral chambers. It is, however, quite possible that transitional forms to E. ephippioides would be found if matrix-free material were available. # Lepidocyclina (Eulepidina) ephippioides (Jones and Chapman) Plate 74, figs. 4-6, 9, 12, 14, text-fig. 12 - 1900 Orbitoides (Lepidocyclina) ephippioides Jones and Chapman, pp. 251-252, pl. 20, fig. 9. - 1900 Orbitoides (Lepidocyclina) murrayana Jones and Chapman, pp. 252–253, pl. 21, fig. 10. 1902 Lepidocyclina (Eulepidina) formosa Schlumberger, p. 251, pl. 7, figs. 1-3. - 1926 Lepidocyclina ephippioides Jones and Chapman; Nuttall, pp. 34-36, pl. 5, figs. 1, 2, 3, 8, and 10. - 1926 Lepidocyclina (Eulepidina) ?formosa Schlumberger; Nuttall, pp. 22-30. - 1965 Lepidocyclina (Eulepidina) ephippioides (Jones and Chapman); Ludbrook, pp. 290, 291. - Lepidocyclina (Eulepidina) murrayana Jones and Chapman; Ludbrook, p. 290. 1965 Remarks. Nuttall (1926) distinguished L. ephippioides from L. andrewsiana on size (the former was, he thought, slightly larger) and on the appearance of the embryonic apparatus, which he considered to be truly eulepidine only in L. andrewsiana. However, he was comparing a well-centred section of L. andrewsiana with off-centre sections of L. ephippioides, and as shown by text-fig. 12 the appearance of the embryonic apparatus in Eulepidina depends entirely on the plane of section. Nuttall (op. cit., p. 35) himself observed that L. ephippioides 'except for the nucleoconch strongly resembles E. formosa', a taxon now generally regarded as synonymous with E. ephippioides. The lectotype designated by Nuttall is from Andrews's sample 549 taken 'at the #### EXPLANATION OF PLATE 74 - Fig. 1. Tayamaia marianensis (Hanzawa), CPC. 13722, sample 1065, between 'G' Traverse and Waterfall, - Fig. 2, 10. Sorites cf. orbiculus (Forskál). 2, CPC. 13773, sample 1358, 'D' Traverse, oblique median section, × 40. 10, CPC. 13744, sample 1355, 'G' Traverse, highly oblique median section, × 30. Fig. 3. Flosculinella bontangensis (Rutten), CPC. 13775, sample 1237 (Ludbrook's P33 locality), near Ross - Hill, off-centre axial section, ×30. - Figs. 4-6, 9, 12, 14. Lepidocyclina (E.) ephippioides (Jones and Chapman), all from 'D' Traverse. 4-6, 9, transverse sections showing variation in shape, size, and number of lateral chambers. 4, CPC. 13776, sample 1045, ×20. 5, CPC. 13777, sample 1044, ×10. 6, CPC. 13778, sample 1331, ×10. 9, CPC. 13779, sample 1331, ×10. 12, 14, median sections through megalospheric forms, both ×20. 12, CPC. 13783, sample 1078. 14, CPC. 13784, sample 1328. - Figs. 7-8. Lepidocyclina (E.) andrewsiana (Jones and Chapman), CPC. 13780 and 13781. Transverse sections showing inflated umbonal region, × 10. Both from sample 1261, Smith Point at 60 ft. - Fig. 11. Marginopora vertebralis Blainville, CPC. 13782, sample 1238, off-centre transverse section, ×40. Fig. 13. Lepidocyclina sp., P. 49091. Tangential section through umbonal region of inflated form (probably L. (E.) andrewsiana) showing greatly thickened walls of lateral chambers, × 16. Thin sections cut along lines a-a or b-b would appear to show thickened umbonal pillars; Andrews's sample 827, 2 miles south of Flying Fish Cove. ADAMS and BELFORD, Oligocene-Miocene foraminifera TEXT-FIG. 12. Parallel median sections through the embryonic apparatus of a single specimen of *Lepidocyclina* (*Eulepidina*) *ephippioides* (sample NB 9051, Kinabatangan River, Sabah, Borneo). It is clear from these drawings that the degree to which the deuteroconch appears to encircle the protoconch depends entirely on the plane of section. Nuttall (1926) would have regarded *a-d* as typical of *L.* (*E*) *ephippioides*, and *e-f* as typical of *L.* (*E*) *andrewsiana* (see p. 500). base of an inland cliff at 500 feet, running south from Flying Fish Cove'. Whether from a fallen block or *in situ* rock was not stated. The occurrence of *Eulepidina* in Assemblage 1 makes it certain that *L.* (*E.*) *ephippioides* came from low in the post-Eocene succession. It is usually associated with *Spiroclypeus margaritatus*, *Miogypsina* (*Miogypsinoides*) *bantamensis*, and *Austrotrillina striata*, and is therefore of Lower *e* age. It is worth noting that the type slides of *L. murrayana* contain a typical Assemblage 2 fauna. # Lepidocyclina sp. Plate 74, fig. 13 Large inflated 'B' forms are common throughout 'D' Traverse and are virtually the only specimens present in the upper part of the section, i.e. above sample 1045. They show considerable variation in shape and size. A particularly prominent feature is the tendency of inflated forms to develop thick walls between the lateral chambers in the umbonal region (Pl. 74, fig. 13). Cuts through these walls can produce the appearance of coarse pustules or pillars in sagittal sections. ## LEPIDOCYCLINA (NEPHROLEPIDINA) H. Douvillé, 1911 Type species. Nummulites marginata Michelotti, 1841. ## L. (Nephrolepidina) spp. This subgenus is surprisingly rare in the samples so far obtained from Christmas Island. It occurs sparsely in 'D' Traverse, Sydney's Dale Traverse, and in a few other localities (e.g. Flying Fish Cove, Andrews's sample 646). In the absence of oriented thin sections it is impossible to assign specific names to these individuals, some of which have hexagonal equatorial chambers. They occur in Assemblages 1-3, and it is certain that more than one species is represented. ## Family HOMOTREMATIDAE Cushman, 1927 Genus CARPENTERIA Gray, 1858 Type species. Carpenteria balaniformis Gray, 1858. ## Carpenteria spp. Numerous fragments and some larger specimens of this genus occur throughout Assemblages 2-5. No attempt has been made to distinguish between different species. # Family ACERVULINIDAE Schultze, 1854 Genus GYPSINA Carter, 1877 Type species. Polytrema planum Carter, 1876. ## Gypsina globula (Reuss) 1848 Ceriopora globulus Reuss, p. 33. 1900 Gypsina globulus (Reuss); Jones and Chapman, p. 229 et seq. Remarks. G. globula occurs throughout most of the succession and it is particularly common in Assemblages 2 and 3. There is nothing to add to previous descriptions. # Family PLANORBULINIDAE Schwager, 1877 Genus TAYAMAIA Hanzawa, 1967 Type species. Gypsina marianensis Hanzawa. # Tayamaia marianensis (Hanzawa) Plate 71, fig. 8; Plate 74, fig. 1 - 1957 Gypsina marianensis Hanzawa, p. 66, pl. 21, fig. 9; pl. 27, figs. 1-8. - 1965 Gypsina marianensis Hanzawa; Ludbrook, p. 292, pl. 22, fig. 2. 1967 Tayamaia marianensis (Hanzawa); Hanzawa, p. 22, fig. 3. Remarks. Along-ranging species that occurs particularly frequently in Assemblages 2-4. # OTHER ATTACHED AND ENCRUSTING GENERA Numerous attached and encrusting forms referable to Acervulina, Borodinia, Kanakaia, and Sporadotrema are present throughout the succession, being particularly common in Assemblages 2-5. The comparative rarity of these forms in Assemblage 1 is consistent with deposition in a fore-reef environment. ## SUMMARY The larger Tertiary foraminifera occurring in the post-Eocene limestones of Christmas
Island appear to be characteristic of the Tertiary Lower e, Upper e, and Lower f Letter Stages. Five locally significant faunal assemblages can be recognized; two of these are probably in part laterally equivalent, and brought into their present topographical positions by fault movements. The close stratigraphical juxtaposition of Miogypsina (Miogypsinoides) complanata, M. (M.) bantamensis, and M. (M.) dehaarti seems to indicate that the evolution of this lineage proceeded very rapidly during the late Oligocene. The early members of the M. (Miogypsina) kotoi-M. (M.) indonesiensis lineage have not been observed on Christmas Island. M. (M.) neodispansa is a fairly advanced form which may well prove to be of regional value in the recognition of late Upper e sediments. Flosculinella is poorly represented on the island. Apart from a single, specifically indeterminable specimen in Assemblage 2 (sample 69F, Batu Merah, Flying Fish Cove), the genus is not seen until well-developed specimens of F. bontangensis appear high in the Ross Hill Traverse. However, the occurrence of what appears to be a primitive form with a good Assemblage 2 fauna almost certainly means that this genus can no longer be relied on to define unequivocally the base of Upper e. Although it has not been possible to determine how many species of Lepidocyclina are represented in the Christmas Island succession, it can be stated that all those described by Jones and Chapman were from limestones of late Lower e age. Acknowledgements. We wish to thank the British Phosphate Commissioners for permitting one of us (D. J. B.) to visit Christmas Island, for providing all necessary facilities and for permitting us to quote results from the ST. 1 stratigraphic bore; Mr. K. Lourey, then Island Manager; Messrs. E. Brennan and P. J. Barrett, B.P.C. geologists at that time, for assistance with the geological work; Mr. D. A. Powell, whose knowledge of the island and of access to the sections sampled was invaluable; and Messrs. Morgan, Ingram, and Johnson of the B.P.C. Fremantle Office, who helped in many ways with travel arrangements. Our thanks are also due to Dr. N. H. Ludbrook for allowing one of us (C. G. A.) to examine her material in Adelaide, and for providing a report on material from the ST. 1 stratigraphic bore. We thank Messrs. Barrett and Powell for their assistance in determining the type locality of Miogypsina neodispansa, and for collecting in the Flying Fish Cove area. Permission to publish has been received by one of us (D. J. B.) from the Director, Bureau of Mineral Resources, Geology, and Geophysics, Canberra. ## REFERENCES - ADAMS, C. G. 1968. A revision of the foraminiferal genus Austrotrillina Parr. Bull. Br. Mus. nat. Hist. (geol.) 16, 73-97, 6 pls. - 10, 73-97, 6 pts. 1970. A reconsideration of the East Indian Letter Classification of the Tertiary. Ibid. 19, 87-137. ANDREWS, C. W. 1900. A Monograph of Christmas Island (Indian Ocean). London. Br. Mus. Nat. Hist. - xiii+337 pp., 21 pls. BARRIE, J. 1967 (unpublished). The Geology of Christmas Island. *Bur. Miner. Resour. Aust. Rec.* 1967/37. BLAINVILLE, H. M. D. DE. 1830. Mollusques, vers et zoophytes. In *Dictionnaire des Sciences Naturelles*, Tome - 60. Paris, F. G. Levrault. CARPENTER, W. B. 1856. Researches on the Foraminifera Pt. 2 on the genera *Orbiculina*, *Alveolina*, *Cyclo-* - clypeus and Heterostegina. Phil. Trans. R. Soc. 146, 547-569, pls. 30-31. CARTER, H. J. 1861. Further Observations on the Structure of Foraminifera and on the Larger Fossilised Forms of Sind, &c., including a new Genus and Species. J. Bombay Brch R. Asiat. Soc. 6, 31-96. - CARTER, H. J. 1876. On the Polytremata (Foraminifera), especially with reference to their Mythical Hybrid Nature. Ann. Mag. nat. Hist. Ser. 4 (17), 185-214, pl. 13. - 1877. On a Melobesian Form of Foraminifera (Gypsina melobesoides, mihi); and further Observations on Carpenteria monticularis. Ibid. 20 (117), 172-176. - COLE, W. S. 1965. Structure and classification of some Recent and fossil peneroplids. Bull. Amer. Paleont. 49 (219), 5-37, pls. 1-10. - 1969. Larger Foraminifera from deep drill holes on Midway Atoll. Prof. Pap. U.S. geol. Surv. 680-C. 1-15, 4 pls. - CRESPIN, I. 1955. The Cape Range Structure Western Australia, Part II Micropalaeontology. Bull. Bur. Miner. Resour. Geol. Geophys. Aust. 21, 49-82, pls. 7-10. - CUSHMAN, J. A. 1927. An outline of a reclassification of the foraminifera. Contr. Cushman Lab. foramin. Res. 3, 1-105, pls. 1-21. - DOUVILLÉ, H. 1905. Les foraminifères dans le Tertiaire de Borneo. Bull. Soc. géol. Fr. Ser. 4, 5, 435-464, pl. 14. - 1911. Les foraminifères dans le Tertiaire des Philippines. Philipp. J. Sci. Ser. D. 6, 53-80, pls. A-D. - DROOGER, C. W. 1953. Some Indonesian Miogypsinae. I. Introduction and descriptions. Proc. Kon. Ned. Akad. Wet. Ser. B, 56, 104-117, pl. 1. - EHRENBERG, C. G. 1839–1840 (for 1838). Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. *Abh. preuss. Akad, Wiss.* 59–147, pls. 1–4. - FICHTEL, L. and MOLL, J. P. C. 1798. Testacea microscopica aliaque minuta ex generibus Argonauta et Nautilus. - Wien, Anton Pichler, xii + 123 pp., pls. 1-24. FORSKÅL, P. 1775. Descriptiones Animalium Avum, Amphibiorum, Piscium, Insectorum, Vermium; quae in - itinere orientali. Hauniae. 19+xxxiv+164 pp. GRAY, J. E. 1858. On Carpenteria and Dujardinia, two genera of a new form of Protozoa with attached - multilocular shells filled with Sponge, apparently intermediate between Rhizopoda and Porifera. Proc. zool. Soc. Lond. 26, 266-271, figs. 1-4. - GÜMBEL, C. W. 1870. Beiträge zur Foraminiferenfauna der nordalpinen Eocängebilde. Abh. bayer. Akad. Wiss. 10, 581-730, pls. 1-4. - HANZAWA, S. 1930. Note on Foraminifera found in the Lepidocyclina-limestone from Pabeasan, Java. Sci. Rep. Tôhoku Univ. Ser. 2 (Geol.), 14, 85-96, pls. 26-28. - 1940. Micropalaeontological studies of drill cores from a deep well in the Kita-Daito-Zima (North Borodino Island). In Jubilee publications in commemoration of Professor H. Yabe's sixtieth birthday, pp. 755-802, pls. 39-42. - 1957. Cenozoic Foraminifera of Micronesia. Mem. geol. Soc. Am. 66, 63 pp., 38 pls. - 1967. Three new Tertiary foraminiferal genera from Florida, Saipan and Guam. Trans. Proc. palaeont. Soc. Japan, N.S. 65, 19-26, pls. 3-4. - JONES, T. R. and CHAPMAN, F. 1900. On the foraminifera of the Orbitoidal limestones and reef rocks of Christmas Island, pp. 226-264, pls. 20-21. In ANDREWS, C. W. A Monograph of Christmas Island (Indian - KRIJNEN, W. F. 1931. Het Genus Spiroclypeus in het Indo-Pacifische gebied. Verh. geol. -mijnb. Genoot. Ned. 9, 77-112, pls. 1-3. - LUDBROOK, N. H. 1965. Tertiary Fossils from Christmas Island (Indian Ocean). J. geol. Soc. Aust. 12, 285-294, pls. 21-22. - MICHELOTTI, G. 1841. Saggio storico dei Rizopodi caratteristici dei terreni sopracretacei. Memorie Soc. ital. Sci. XL **22**, 253–302, pls. 1–3. — 1861. Études Sur le Miocène inférieur de l'Italie septentrionale. *Maatsch. Wetensch. Haarlem, Natuark.* - Verh. Haarlem, 183 pp., 16 pls. - MONTFORT, D. DE. 1808. Conchyliologie systématique et classification méthodique des coquilles. Paris, F. Schoell. 1, lxxxvii+409 pp. - MORTON, S. G. 1833. Supplement to the 'Synopsis of the Organic Remains of the Ferruginous Sand Formation of the United States', contained in Vols. XVII and XVIII of this Journal. Am. J. Sci. 23, 288-294, pls. 5 and 8 - NUTTALL, W. L. F. 1926. A revision of the Orbitoides of Christmas Island. Q. Jl geol. Soc. Lond. 82, 22-42, pls. 4-5. - ORBIGNY, A. D'. 1826. Tableau méthodique de la classe des Céphalopodes. Ann. Sci. nat. Ser. 1, 7, 96-314, pls. 10-17. - PARR, W. J. 1942. New Genera of Foraminifera from the Tertiary of Victoria. Min. geol. J. 2, 361-363, figs. 1-5. - REISS, Z. and GVIRTZMAN, G. 1966. Borelis from Israel. Eclog. geol. Helv. 59, 437-447, pls. 1-2. - REUSS, A. E. 1848. Die fossilen Polyparien des Wiener Tertiarbeckens. Naturw. Abh. Wien, 2, 1-109, pls. 1-11. RUTTEN, L. 1913. Studien über Foraminiferen aus Ost-Asien. Samml. geol. Reichmus. Leiden, Ser. 1, 9, 219-224, pl. 14. - SACCO, F. 1893. Sur quelques Tinoporinae au Miocene de Turin. Bull. Soc. belge Géol. Paléont. Hydrol. 7, 204-207. - SCHEFFEN, w. 1932. Ostindische Lepidocyclinen. Dienst. Mijnb. Wetensch Meded. Batavia, 21, 5-76, pls. 1-14. SCHLUMBERGER, C. 1893. Note sur le genres Trillina et Linderina. Bull. Soc. géol. Fr. Ser. 3, 21, 118-123, pl. 3. - 1900. Note sur le genre Miogypsina. Ibid. 28, 327-333, pls. 2-3. - 1902. Note sur un Lepidocyclina nouveau de Borneo. Samml. geol. Reichsmus. Leiden, Ser. 1, 6, 250-253, pl. 7. - SCHUBERT, R. J. 1910. In RICHARZ, P. S. Der geologische Bau von Kaiser Wilhelms-land nach dem heutigen Stand unseres Wissens. In BOEHM, G. Geologische Mitteilungen aus dem Indo-Australischen Archipel. Neues Jb. Miner. Geol. Palaont. Biel. 29, 406-536, figs. 1-10, pls. 13-14. SCHULTZE, M. s. 1854. Über den Organismus der Polythalamien (Foraminiferen) nebst Bemerkungen über die - Rhizopoden im allgemeinen. Leipzig, Engelmann, 1-68, pls. 1-7. - TAN SIN HOK. 1932. On the genus Cycloclypeus Carpenter. Pt. 1 and an appendix on the Heterostegines of Tjimanggoe, S. Bantam, Java. Wet. Meded. Dienst. Mijnb. Ned.-Oost Indie, 19, 3-194, pls. 1-24. - 1936. Zur Kenntnis der Miogypsiniden. Ing. Ned.-Indie, 4, 45-61, pls. 1-2 - TODD, R. and POST, R. 1954. Smaller Foraminifera from Bikini Drill Holes. Prof. Pap. U.S. geol. Surv. 260-N, 547-568, pls. 198-203. - TRUEMAN, N. A. 1965. The phosphate, volcanic and carbonate rocks of Christmas Island (Indian Ocean). J. geol. Soc. Aust. 12, 261–283, pls. 18–20. - VLERK, I. M. VAN DER. 1924. Miogypsina Dehaartii nov. spec. de Larat (Moluques). Eclog. geol. Helv. 18, 429-432, figs. 1-3. - YABE, H. and HANZAWA, S. 1928. Tertiary Foraminiferous Rocks of Taiwan (Formosa). Proc. imp. Acad. Japan, 4, 533-536, figs. 1-3. C. G. ADAMS Department of Palaeontology British Museum (Natural History) Cromwell Road London, SW7
5DB D. J. BELFORD Bureau of Mineral Resources, Geology and Geophysics P.O. Box 378 Canberra City, A.C.T. 2601 Australia Typescript received 14 June 1973