EARLY DEVONIAN CONODONT FAUNAS FROM BUCHAN AND BINDI, VICTORIA, AUSTRALIA

by RUTH MAWSON

ABSTRACT. Conodont faunas of the Taravale Formation, in sections measured at Buchan and Bindi, Victoria (south-eastern Australia), contain polygnathid conodonts representative of the dehiscens, perbomaiargronbergi, inversus, and serotinus zones of the Early Devonian (late Pragian to middle Dalekian). New taxa described are Polygnathus dehiscens abyssus, P. labiosus and P. pseudoserotinus (both belonging to a lineage derived from P. d. abyssus), P. nothoperbomai, and Ozarkodina prolata. The ammonoid faunas of the Taravale Formation are shown to be restricted to the dehiscens and perbomai zones. Three species of goniatites, associated with two or more species of bactrids, occur within the dehiscens zone at Buchan and are thus among the oldest firmly dated ammonoids in the world.

STUDY of the sequence of conodont faunas at Buchan and Bindi, Victoria, had several objectives: to test the applicability in Australia of the zonal system developed mainly from northern hemisphere conodont sequences, paying special attention to the polygnathids; to commence development of a framework for the study of dacyrocoelid biostatigraphy in this part of the world; and to provide more precise ages for the evolutionarily important Early Devonian ammonoids previously described (Teichert 1948; Erben 1964, 1965) from the Taravale Formation. As international correlation for the late Early Devonian has come to be based primarily on polygnathid conodonts (e.g. Klapper and Ziegler 1979; Klapper and Johnson 1980) the discussion of polygnathids given herein spreads wider than consideration of the polygnathids from the Buchan and Bindi areas. An account of the implications of the conodont work for ages of the Taravale ammonoids is given.

STRATIGRAPHY

The Buchan Group of eastern Victoria is a sequence of carbonates and shales (maximum thickness c. 3,300 m) which outcrop in at least fifteen discrete areas to the north and east of their most extensive development in the Buchan–Murrindal area (text-figs. 1 and 2). Some occurrences are synclinal, as at Buchan and at The Basin, 12 km north-east of Buchan; others, such as that at Bindi and those at Jackson Crossing and in the headwaters of the Indi River and Limestone Creek, about 75 km to the north, and at Gillingall, 20 km to the north-north-west, owe their preservation to faulting. In all these occurrences, the basal unit of the Buchan Group, the Buchan Caves Limestone, rests disconformably or with minor unconformity on the Snowy River Volcanics (as at Buchan, The Basin, and at the junction of Dead Horse Creek and Limestone Creek in the headwaters of the Indi River); it is markedly unconformable at Bindi.

Lithologies of the Buchan Caves Limestone (maximum thickness c. 230 m at East Buchan, but up to 295 m at Bindi) have been described in some detail by Talent (1956) for the Buchan–Murrindal area. There is remarkable uniformity in lithologic and macro-faunal succession within the Buchan Caves Limestone throughout eastern Victoria, suggesting original deposition on a near-planar surface, termed the Buchan–Indi–Combibiar Shelf by Talent (1965, 1969). A basal sequence of pale- to mid-grey dolomites (weathering to buff) is characteristic of all outcrop areas; it reaches a maximum thickness exceeding 40 m in the Back Creek area of East Buchan where it has been quarried commercially on a small scale. The remainder of the Buchan Caves Limestone consists predominantly of calcarenites, a fairly high frequency of algal pisoliths, rare crinoidal limestones,
TEXT-Fig. 1. The Buchan Group in the Buchan-Murrindal-The Basin area, eastern Victoria.
and, in the upper parts of the formation, micritic limestones (calcilutites); the micrites aggregate 7-14% of any sequence of the formation and are best developed in the upper third, though the last 15-30 m consists predominantly of calcarenites in all three areas (Buchan–Murrindal, Bindi, and The Basin) where the highest beds of the Buchan Caves Limestone occur in conjunction with the Taravale Formation. There are only three occurrences of non-carbonate sediments known from the Buchan Caves Limestone in the areas about Buchan (Talent 1956); one of these, the areally restricted Cameron Mudstone Member at East Buchan (loc. Ma12, text-fig. 1) has yielded dacrycoelozoan brachiopod forms with a kindlei or perhaps sulpicus age and are therefore the oldest-dated sediments from within the Buchan Caves Limestone. At Bindi, impure carbonates and mudstones are well developed within the upper third of the Buchan Caves Limestone, outcropping best in Bonanza, McAdam’s, and Harding’s Gullies.

![Diagram](image)

TEXT-FIG. 2. Diagrammatic north–south section of the Buchan–Murrindal area, eastern Victoria, showing relationship of stratigraphic units of the Buchan Group and position of stratigraphic sections relative to the stratigraphy.

Coral, ostracode, brachiopod, and bivalve faunas of the Buchan Caves Limestone are notable for their relatively low diversity (Hill 1950; Krömmelbein 1954; Talent 1956). Philip (1966) has already discussed conodonts from three spot-samples from the Buchan Caves Limestone at Buchan. The present study has not focused on the conodont faunas of the Buchan Caves Limestone apart from the highest beds at Murrindal (section ‘P’ sample 1-1 of Table 2) and The Basin (section ‘SLO’, lowest sample, Table 3), spot-sampling at Martin Cameron’s Quarry, South Buchan (sample Ma 9), and a sequence through the upper Buchan Caves Limestone at Bonanza Gully, Bindi (section ‘BON’, text-fig. 3, Table 4). The last of these passes through an uncharacteristically rich fossiliferous carbonate sequence which Talent (1967), on the basis of brachiopod faunas, had concluded to be significantly younger than the highest horizons of the Buchan Caves Limestone in the Buchan–Murrindal area, i.e. that there was significant diachronism of the top of the Buchan Caves Limestone between Buchan and Bindi. As will be shown later, conodont evidence is in accord with this contention; the diachronism is substantial.

The main focus of this study has been the conodont faunas of the Taravale Formation, a sequence of nodular limestones, shales, and impure limestones conformably overlying the Buchan Caves Limestone. Outcrops of Taravale Formation are restricted to three areas: major developments at Buchan and Bindi, and a minor synclinal body (previously overlooked) occupying only a few hectares at The Basin. Presently available evidence suggests great differences in rates of
sedimentation between Bindi (c. 3,000 m of Taravale Formation and Shanahan Limestone—presumed to have been originally interdigitating southwards with the Taravale Formation—spanning from somewhere in the perbonas Zone to somewhere low in the serotinus Zone), Buchan (c. 700 m from somewhere presumed low in the dehiscens Zone to somewhere presumed low in the serotinus Zone), and The Basin where beds correlate with the dehiscens Zone aggregate a mere 60 m or so before being overlain by beds yielding Polygonathus perbonas.

In the Buchan area, the Taravale Formation grades northwards into the Murrindal Limestone. Teichert (in Teichert and Talent 1958) divided this unit of up to 250 m of limestones and subordinate mudstones into two members: well-bedded limestones were referred to as the McLarty Member and massive limestones, interpreted as being biothermal, were termed the Rocky Camp Member. The tongue of Taravale Formation lying between the Murrindal Limestone and the Buchan Caves Limestone to the north was designated the Pyramids Mudstone Member of the Taravale Formation. Some reservations have been voiced (Philip 1966) as to the utility of dividing the Murrindal Limestone into members in this way, but no lithofacies analysis subsequent to Teichert's work has yet been published. The Murrindal Limestone (up to 230 m in thickness) embraces a rich array of carbonate lithologies indicative of a wide range of environments: micrites to calcarenites and very minor rudites, algal limestones (including a very prominent biostromal marker horizon about 2 m thick, packed with dasycladacean algae, outcropping about 75 m above the base of the formation in the Rocky Camp—McLarty Ridge area), and intercalations of mudstones, calcareous mudstones, and nodular limestones; the last are best exposed in road cuttings 0-6 km south-south-west of the now-abandoned Murrindal State School.

The Pyramids Member of the Taravale Formation outcrops poorly. The best exposures are by no means extensive and occur in road cuttings near the Murrindal State School (sections 'M' and 'P', text-figs. 2 and 5), in Dalley Creek downstream from its junction with Rocky Camp Gully (loc. Ma2, text-fig. 1), and in the gully east of 'Chisholm's' (text-fig. 5) where there are mudstones with limestone nodules and subordinate developments of flaggy or nodular argillaceous limestones. More typically, the Pyramids Member does not outcrop; areas underlain by this unit are normally represented by grassy slopes with occasional flat-sized or larger nodules bearing chonidet brachiopods (usually 'Chonetes' australis (M'Coy) or 'C. teichertii' Gill), and occasionally cephalopods.

Philip (1966) collected eight bulk samples for acid-leaching: three from the Buchan Caves Limestone, one from the Taravale Formation, and four from the Murrindal Limestone (text-fig. 1); all samples yielded conodonts. Using the information then available on northern hemisphere faunas, he concluded that the Murrindal Limestone was Early Emsian and the Buchan Caves Limestone youngest Siegenian.

Because of its combination of ammonoids and dacroconarids and the assumed considerable time-equivalence of strata involved, the initial focus of the present study was the Taravale Formation. A cutting on the disused road to the old Tara homestead (top of Buchan Caves Limestone and lower beds of Taravale Formation in continuous outcrop), another at the entrance to the Buchan Caves Reserve (text-figs. 1 and 2) (type localities for Teicherticeras desideratum (Teichert) and Talenticeras talenti Erben), and, above all, a near-continuous suite of outcrops in road cuttings for 3-5 km along the Gelantipy Road north of Buchan (text-fig. 4) provided the basis for investigations which involved bed-by-bed collecting for conodonts, dacroconarids, and associated macrofauna. This work was supplemented by sampling of the basal beds of the Pyramids Member of the Taravale Formation at Murrindal near the abandoned Murrindal State School, and beds outcropping on the Buchan–Orbost road that are considered on structural grounds to be slightly higher stratigraphically than the highest beds exposed on the Gelantipy Road. There are few outcrops of the Taravale Formation away from road cuttings, so little additional sampling was carried out in the Buchan–Murrindal area. A previously unsuspected area of Taravale Formation was discovered in the core of the main syncline at The Basin, 12 km north-east of Buchan; poorly outcropping nodule horizons yielded excellently preserved conodonts. To supplement information gained from these sections, spot-samples were taken from key areas (text-fig. 1), for example at the top of the Murrindal Limestone along the access road to the old Rocky Camp (Commonwealth) Quarry,
above and below the Murridal Limestone on McLarty’s Ridge, in and above McLarty’s Landslip, and in the road cuttings about Teichert’s localities 65 and 66 on the East Buchan Road.

The Taravale Formation at Bindi (text-fig. 3), 50 km north-north-west of Buchan appears to be homoclinal and, as previously mentioned, much thicker (c. 3,000 m) than at Buchan. This great thickness is puzzling. Exposures are admittedly very poor over most of Bindi, but among the scatter of outcrops along Old Paddock Creek no reversed facings were found, so isoclinal folding is not the answer. It is accordingly concluded that the sequence of Taravale Formation at Bindi is much thicker than at Buchan or The Basin. Some thirty-five spot-samples from restricted areas of outcrop (text-fig. 3) previously collected for macrofossils were sampled and some re-sampled; though not many of these yielded conodonts, none of the results (Table 4) suggests any reversal of sequence.
TEXT-FIG. 5. Location of stratigraphic sections and localities sampled at Murrindal, eastern Victoria.
TABLE 1. Distribution of conodont elements in samples from the Taravale Formation, Gelantipy Road section at Buchan, eastern Victoria.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Weight of sample</th>
<th>Conodont morphology</th>
<th>Palaeoecology</th>
<th>Geochemistry</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limestones in an appreciable section of what appear to be the highest beds outcropping along a rough road on the left flank of Limestone Creek (also known as Dry Gully) were sampled.

It has been suggested (Talent 1965, 1967) that the highest beds of the Buchan Caves Limestone at Bindi extend to horizons substantially younger than those at Buchan; to test this, a stratigraphic section was measured through these beds in the vicinity of McAdam's and Bonanza Gullies (text-fig. 3). An additional section was measured through the Shanahan Limestone, a previously overlooked but substantial (thickness c. 210 m) and well-exposed sliver of limestones, resembling the Murrindal Limestone of the Buchan-Murrindal area, outcropping adjacent to the Indi Fault north of Bindi. The conodont evidence adduced here, that it is correlative with the perbonus Zone, suggests that configurationally it was very similar to the Murrindal Limestone: interfingering southwards with the Tarawale Formation (spanning from somewhere in the perbonus Zone into the serotinus Zone).

The Tarawale Formation typically consists of impure limestone nodules and irregular, discontinuous limestone beds in mudstones. Because of the muddy nature of the limestone sampled, the conodont yield was only moderate (Tables 1–6) and the leaching process slow but, using generally large samples (c. 8–10 kg), sufficient yields have been obtained, in my opinion, to verify the proposed polygnathid lineages (text-fig. 6). The samples from the Buchan and Bindi areas yielded 5,131 conodonts from 1,581 kg of limestone, equivalent to 3-2 conodonts per kg.

EARLY DEVONIAN POLYGONATHID LINEAGES FROM EASTERN AUSTRALIA

The phylogeny of Early Devonian polygnathid conodonts has been greatly clarified since Klapper and Johnson (1975) illustrated, with faunas from the Early Devonian at Lone Mountain, Nevada, the evolutionary sequence from Polygnathus dehiscens to P. laticostatus and from P. aff. P. perbonus to P. serotinus, the latter sequence being characterized by an interval of stratigraphic overlap of P. inversus and P. serotinus.

Comparison of the Nevada and other Early Devonian faunas from the northern hemisphere (e.g. Carls and Gandl 1969; Klapper 1969; Uyeno in McGregor and Uyeno 1972; Perry et al. 1974; Alrawi 1977; Chatterton 1979; Lane and Ormiston 1979; and Uyeno and Klapper 1980) with those already known from Australia (e.g. Philip 1966; Philip and Jackson 1967; Telford 1975; Fordham 1976; Pickett 1978) indicates that the southern hemisphere polygnathid lineages for this period of time differ: The P. gronbergi–P. laticostatus lineage is not clearly present in Australian faunas and, moreover, the P. aff. P. perbonus lineage (herein described as the P. nothoperbonus lineage) appears to vary in detail in Australia compared with the same lineage in the northern hemisphere. From P. dehiscens Philip and Jackson, two lineages were identified by Klapper and Johnson (1975):

1. P. gronbergi Klapper and Johnson → P. laticostatus Klapper and Johnson;

Unlike the succession at Lone Mountain, Nevada, the Buchan and Bindi sequences in south-eastern Australia do not contain the dehiscens → gronbergi → laticostatus lineage but it appears that two different paths of evolution from P. dehiscens are represented:

1. a lineage very similar to the second lineage of Klapper and Johnson (1975);
2. a lineage not previously described.

Near the base of the sections measured at Buchan and at Bindi (text-figs. 1–3), the first polygnathid element in the sequence is P. dehiscens (Tables 5 and 6). In some smaller specimens of early P. dehiscens (see Pl. 32, figs. 1 and 2), the adcarinal grooves are only very slightly developed and ornamentation consists typically of nodes on very short ridges, consistent with evolution from P. pirenae Boersma (Boersma 1974; Klapper in Ziegler 1977). No specimens definitely identified as P. pirenae have been found. However, two subspecies of P. dehiscens can be distinguished: P. dehiscens dehiscens with a large basal cavity forming an open, flat, or very shallow trough posteriorly and P. dehiscens abyssus with a deeper, V-shaped basal cavity.
TABLE 2. Distribution of conodont elements in samples principally from the Taravale Formation at Buchan-Murrindal, eastern Victoria.

<table>
<thead>
<tr>
<th>Base of beds (in metres) above base of section</th>
<th>'P' SECTION</th>
<th>'M' SECTION</th>
<th>'OTRC' SECTION</th>
<th>'EB' SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample number</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Weight of sample (kg)</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oplotus murrindalensis</th>
<th>M</th>
<th>S</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygnathus spp. (see Tables 5 and 6 for differentiation of Pa elements)</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>Ozarkodina buchanensis</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>O. excavata excavata</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>O. linearis</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>O. prolata</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>Pandorinellina exigua exigua</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>Belodelta devonica</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Belodelta resima</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Belodelta triangularis</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Drepanodus sp.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Panderodus unicosatus (undifferentiated)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Panderodus recurvatus</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
TABLE 3. Distribution of conodont elements in samples principally from the Taravale Formation at Buchan-Murrindal and The Basin, eastern Victoria.

<table>
<thead>
<tr>
<th>Name above base of section</th>
<th>BUCHAN CAVE ENTRANCE SECTION</th>
<th>SLOCOMBE'S SECTION</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth of sample (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lineage 1 (text-fig. 6). From *P. dehiscens dehiscens* developed *P. nothoperonus* sp. nov. (= *P. aff. P. perbonus sensu* Klapper and Johnson 1975; see below) with a small to medium-sized, fairly shallow basal cavity that is variably inverted at the posterior end of the unit. *P. nothoperonus* sp. nov. gave way, via intermediate forms, to *P. inversus* in which the basal cavity is almost entirely inverted except for a relatively large pit anterior to the inward deflection of the keel. Again via intermediate forms, *P. inversus* can be seen to have developed into *P. serotinus* which is characterized aborally by a basal cavity entirely inverted posterior of the pit (situated close to the sharp inward deflection of the unit), by development of a lip on the outer margin of the pit, and, orally, by the outer margin being higher than the carina and inner margin. The distinctive lip is supported by a build-up of material aborally or a bulge in the platform as shown by the deflected striations (Pl. 33, fig. 9). The reduction in size of the basal cavity in this lineage results from progressive inversion of the cavity (text-fig. 6).

Lineage 2 (text-fig. 6). *P. dehiscens abyssus* subsp. nov. developed into *P. perbonus*, both forms having a basal cavity with a V-shaped profile. *P. perbonus* in turn gave way through intermediate forms to a ‘large-lipped’ *P. perbonus* herein described as *P. labiosus* sp. nov. It is as if the flanges of the V-shaped cavity of *P. perbonus* ‘seamed up’, leaving the ‘lips’ protruding. Transitional forms
TABLE 4. Distribution of conodont elements in samples principally from the Buchan Caves Limestone, Shanahan Limestone, and the Taravale Formation at Bindi, eastern Victoria.

<table>
<thead>
<tr>
<th>Metres above base of section</th>
<th>BONANZA GULLY SECTION</th>
<th>SECTION THROUGH LIMESTONE</th>
<th>SPOT SAMPLES IN TARAVALE FORMATION</th>
<th>SOUTH ARM LIMESTONE QUARTZITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of sample (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oolodus murrindalensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygnathus spp. (See Table 6 for differentiation of Po elements)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozarkodina buchanensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. excavata excavata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. linearis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. prolata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandorinella exigua exigua</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belodella devonica Belodella resina Belodella triangularis Draparnaudia sp. Panderodus unicosatus (undifferentiated) Panderodus valgus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Table content follows with specific counts and percentages]
TABLE 5. Distribution of Pa elements of *Polygnathus* spp. at Buchan, eastern Victoria.

<table>
<thead>
<tr>
<th>Section</th>
<th>Buchan Cave Entrance Section</th>
<th>Selanpy Road Section</th>
<th>East Buchan Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. deer</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. b</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. d</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. f</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. b</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. d</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 6. Distribution of Pa elements of *Polygnathus* spp. at The Basin and Bindi, eastern Victoria.

<table>
<thead>
<tr>
<th>Section</th>
<th>Bonanza Gully Section</th>
<th>Slocombes Section</th>
<th>Shanahan Limestone Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. deer</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>P. n.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. b</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. d</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. n. e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. b</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. d</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. p. e</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

are seen from *P. labiosus* to a form superficially similar to *P. serotinus*, herein described as *P. pseudoserotinus* sp. nov., where the small, subcircular, shelf-like protuberance is suspended (rather than supported by a bulge in the platform on the outer side of the pit as in *P. serotinus*), representing the vestigial lips of *P. labiosus*. The intermediate forms show development of the higher outer margin as the basal cavity ‘seams up’ asymmetrically leaving a lip on the outer margin of the pit. The reduction in size of the basal cavity in this lineage has resulted from the progressive ‘seaming up’ of the cavity (text-fig. 6).

Quo vadis polygnathids? Although the Buchan and Bindi samples have yielded no polygnathids younger than *P. serotinus*, faunas of the *serotinus* and younger zones are known from elsewhere in eastern Australia, notably from the Broken River (Telford 1975) and Timor, New South Wales (Pedder, Jackson and Ellenen 1970). The best sequences for scrutiny of *serotinus* and later zones spanning the Early Devonian-Middle Devonian boundary are to be found in the Broken River
TEXT-FIG. 6. Proposed lineages of Early Devonian *Polynathus* in Australia; the right-hand branch is a northern hemisphere lineage.
area (Mawson et al. 1985), which includes the type locality for *P. serotinus* (Telford 1975). From examination of Telford’s original material of *P. serotinus* and topotype material (Mawson et al. 1985), the lip adjacent to the basal pit is buttressed by shell material rather than being a free, ledge-like lip. Localities yielding *P. serotinus* also contain specimens intermediate between *P. labiosus* and *P. pseudoserotinus*.

Weddig and Ziegler (1979, fig. 1, p. 160), using material from the Rhenish Slate Mountains, proposed a 'tree' with three main branches to depict the evolution of polynathids. All three branches, the *linguiformis* branch, the *robustocostatus* branch, and the *costatus* branch, are represented in Australian faunas, including the Broken River faunas of north Queensland (Telford 1975; Mawson et al. 1985). As Australian faunas do not contain the *dehiscens-gronbergi-laticostatus* lineage (see also Klapper and Johnson 1980), forms ancestral to the *costatus* main branch probably arrived in Australia towards the end of the Early Devonian when seaways were becoming less restricted (Charpentier 1984) and there was an increase in cosmopolitanism of conodont faunas (Telford 1972, 1979; Klapper and Johnson 1980; Charpentier 1984).

DACRYOCONARIDS OF THE TARAVALE FORMATION

Initially it was envisaged that this study would include a parallel zonation of dacryoconarids and conodonts of the Taravale Formation at Buchan. Although over two hundred horizons in the Gelantipy Road section and a further forty in the entrance to the Buchan Caves Road section have been sampled, washed, and picked and many dozens of thin sections prepared, the work has been hindered by the lack of complete specimens; most of the thousands of specimens picked from the samples lack the initial chamber, making identification, in many instances, impossible. Thin sectioning of the specimens contained within limestone nodules has not gone far towards solving the problem as the crystallinity of preservation of most material has, at high magnification, obscured structural details.

Some species of dacryoconarids from the Taravale Formation are new, and some similar to, if not the same as, undescribed species from La Grange, France, presently being studied by Professor Hubert Lardeux (pers. comm.). Work on the identification and zonation of the dacryoconarids will continue with a view to calibrating the conodont and dacryoconarid successions for the *dehiscens* to *serotinus* zones.

AGE OF AMMONOIDS PREVIOUSLY DESCRIBED FROM THE TARAVALE FORMATION

One of the objectives of the present investigation was to provide a firmer basis for dating the Taravale Formation goniatites and bactritids. When these were first recorded from Buchan by Teichert (1948), the association of *Gyrococeratites* and *Lobobactrites* was taken to be indicative of an early Middle Devonian age. At that time there were very few records of ammonoids from horizons that were of indubitable late Early Devonian age; all of these, mostly poorly known and, in terms of modern stratigraphic imperatives, imprecisely located stratigraphically, were from Germany or Bohemia. The fauna was subsequently expanded by Erben (1964, 1965) who concluded that the Buchan ammonoids must be of late Emsian age; this was the view advocated by Chlupac (1976) in a review of the oldest goniatite faunas and their stratigraphic significance. Subsequently, House (1979) placed the two genera based on type species from the Taravale Formation, *Teicherticeras* and *Talenticerus*, doubtfully within the early but not earliest Emsian.

Conodont studies have vastly improved correlations of ammonoid-bearing units and time-ranges for many early ammonoids, thus providing a framework within which their early evolution can be more precisely understood. Among such studies is that of the Nandan facies of South China by Xian et al. (1980) who combined biostratigraphic studies of conodonts, dacryoconarids, ammonoids, trilobites, and tabulate corals. Interestingly, they documented the co-occurrence of *Anioceras* and
Erbenoceras with *Polygnathus perbonus* and *Nowakia barrandei* Bouček and Prantl, but not with *P. dehiscens*, though with the range of *Anetoceras* possibly extending down into an interval wherein *P. dehiscens* may overlap with *P. perbonus*. The situation seems to be similar in the Bohemian where the earliest goniatites appear at the top of the Zlíchov Limestone, again associated with *N. barrandei* and with *P. perbonus* or *P. ?perbonus* according to Chlupáč et al. (1977). In a review of the Devonian biostratigraphy of Guangxi, Bai et al. (1980, p. 5, fig. 4) showed that the range of *Anetoceras* coincides with that of *P. dehiscens* for approximately 8 m in the Chongzhou Formation. Bulynck and Hollard (1980, pp. 13–14, figs. 2 and 3) showed *A. advolvens* occurring with *P. gronbergi* (their Fauna III) and with *Icriodas bilaterirecens* (their Fauna II). The latter may be a pre-*gronbergi–perbonus* Zone ammonoid occurrence, but in an assemblage lacking polygnathids it is difficult to determine if Fauna II belongs to the upper *dehiscens* Zone or to the lower *gronbergi* Zone because *I. bilaterirecens* spans both zones. There can be little doubt that the type localities for the oldest goniatites at Buchan occur within the *dehiscens* Zone (text-fig. 7), within the upper part of the zone, in early rather than late Zlíchovian.

TEXT-FIG. 7. Detail of Buchan Caves Entrance (BCE) section showing stratigraphic position of goniatites, bactritids, and polygnathid conodonts.
The conodont correlations for the various goniatites and bactritids from the Taravale Formation can be summarized as follows:

1. The type locality for *Talenticeras talenti* Erben and the horizons of *Teicherticeras* n. sp. D and n. sp. E of Erben (1965) fall well within the *dehiscens* Zone (text-fig. 7, Table 3).

2. The type locality of *Teicherticeras desideratum* (Teichert) occurs low in the *perbonus* Zone (text-fig. 7, Tables 3 and 5).

3. The type locality for *Lobobactrites inopinatus* Teichert (his loc. C, 1948), from beds in the centre of the anticline from which the Gelantipy Road stratigraphic section was commenced (text-fig. 7, Tables 1 and 5), is from the *dehiscens* Zone. The paratype, from Teichert’s locality B, is not precisely located (confirmatory conodont evidence is not available), but is surely within the *perbonus* Zone. The best estimate of this horizon, taking into account the outcrops around the first hairpin bend on the Gelantipy Road north of Buchan, is that it is approximately equivalent to the sampled horizons 8.8.4.2 or 8.8.4.3 on the Gelantipy Road section, i.e. a few metres above the horizon of the holotype of *T. desideratum*. Teichert (1948) believed these two horizons to be the same; this may well be the case.

4. The localities for the holotype and paratypes of *Bactrites howitti* Teichert (locs. D and E of Teichert 1948) were not sampled for conodonts but were considered by Teichert to be approximately equivalent stratigraphically. Their position, about 90 m above the top of the Buchan Caves Limestone, suggests a horizon about the same as that of the type locality for *Talenticeras talenti* in the entrance cutting to the Buchan Caves Reserve, i.e. within the *dehiscens* Zone; but the suggestion of decreasing thickness of section north-eastward towards The Basin may indicate that these horizons are slightly younger, i.e. within the lower part of the *perbonus* Zone. Several as yet unidentified specimens of *Bactrites*, seemingly belonging to this species, have been collected from *dehiscens* horizons in the entrance cutting to the Buchan Caves Reserve.

In summary, the ammonoid faunas of the Taravale Formation are restricted to the *dehiscens* and *perbonus* zones, with at least three species of goniatites and one (possibly two) species of bactritids occurring in the *dehiscens* Zone, thus making them among the oldest firmly dated ammonoids in the world.

CONCLUSIONS

Basic data for evaluation of four of the Australian Early Devonian (*dehiscens* to *serotinus* zones) conodont faunas has been presented. There are, admittedly, a number of elements (some new) that at this stage appear to be endemic. Some endemism in Australian faunas has been pointed out previously (Telford 1972, 1979; Fahraeus 1976; Klapper and Johnson 1980; Charpentier 1984), but its degree in Australian conodont faunas for the late Early Devonian is not sufficient to confound international correlation. The apparent extensions of range of some previously described species produce no profound discrepancies that would call into question significant parts of the present zonal scheme for this part of the Early Devonian. The present scheme has evolved rapidly, particularly over the past decade, and has been thoroughly reviewed and reworked recently (Klapper and Ziegler 1979; Klapper and Johnson 1980; Ziegler and Klapper 1985). The increased data presented here for at least four of the zones has reinforced the applicability of this zonal scheme to Australian faunas.

Dehiscens Zone

The key species of this zone, *Polygnathus dehiscens*, is found at the base of the Taravale Formation at Buchan (text-figs. 1 and 2; OTRC section) and high in the Buchan Caves Limestone at Bindi (text-fig. 3, BON section), confirming the diachronous nature of the top of the Buchan Caves Limestone between Buchan and Bindi. With *P. dehiscens* *dehiscens* occurs *P. d. abyssus* subsp. nov. (whose range is similar to that of *P. d. dehiscens*); *P. d. dehiscens* extends upwards to 105.6 m above the top of the Buchan Caves Limestone in the Taravale Formation at Buchan, and *P. d. abyssus* extends to 116 m above the base of the same section (Table 5). The type locality for *Talenticeras talenti* Erben lies between beds BCE12 and BCE11, 100 m above the base of the Buchan Caves.
Limestone in the section at the entrance to the Buchan Caves, within the *dehiscens* Zone. Sixteen metres higher in the section, within bed BCE3, the type locality for *Teicherticeras desideratus* (Teichert) falls low in the *perbonus* Zone.

Elsewhere in Australia, conodont faunas of the *dehiscens* Zone have been documented from New South Wales at Ravine (Flood 1969) and Wee Jasper (Philip and Jackson 1967; Pedder, Jackson and Philip 1970).

Perbonus Zone

As the differences in the ranges of *P. perbonus* (from 116 m to 271 m above the base of the Buchan Caves Limestone) and *P. nothoperbonus* (from 119 m to 272 m) are not great in the Gelantipy Road section at Buchan (Table 5), they are taken to be approximate stratigraphical equivalents. Apart from at Buchan, Bindi, and The Basin, the *perbonus* Zone is known to occur in Australia at Wee Jasper (Philip and Jackson 1967; Pedder, Jackson and Philip 1970). Pickett (1980) reported a single specimen of *P. perbonus* from Cobar; the specimens referred to as 'P. perbonus late form' by Pickett (1978) from Mount Frome, are probably *P. perbonus sensu stricto*.

Inversus Zone

P. inversus and *P. labiosus* seem to have broadly the same stratigraphic range, but *P. labiosus* arises 29 m lower in the Taravale Formation along the Gelantipy Road. *P. labiosus* overlaps considerably in range with *P. perbonus*, but in the Gelantipy Road section there is a gap of 3 m between the highest occurrence of *P. perbonus* and the first occurrence of *P. inversus*. Elsewhere in Australia, faunas of *inversus* zone age occur in Queensland at the Broken River (Telford 1975) and in the Nogoa anticline, Springsure, Queensland (Fordham 1976).

Serotinus Zone

P. pseudoserotinus, assumed to be broadly equivalent stratigraphically to *P. serotinus*, first appears in the Gelantipy Road section 419 m above the top of the Buchan Caves Limestone; the entry of *P. serotinus* is some 34 m higher (Table 5). At Bindi, in the SALC (south arm of Limestone Creek) section, both forms occur (Table 6). It is assumed that these occurrences represent very early forms of *P. serotinus* as they occur in sequence with or after *P. inversus*. Older forms of *P. serotinus* occur in the Jessey Springs section at the Broken River (Mawson et al. 1985); in this section, the upper boundary of the *serotinus* Zone is placed at last occurrence of *Pandorinellina exigua exigua* (Mawson et al. 1985). Key species of this zone have been reported from Wee Jasper, New South Wales (Philip and Jackson 1967; Pedder, Jackson and Philip 1970), Mount Frome, New South Wales (Pickett 1978), and the Nogoa anticline, Springsure, Queensland (Fordham 1976).

SYSTEMATIC PALAEONTOLOGY

As the purpose of this study was primarily biostratigraphic, and because the Pa elements of multielement assemblages show most obvious changes through time, only the Pa elements of the multi-element species of *Polygnathus, Oulodus, Pandorinellina*, and *Ozarkodina* found at Buchan and Bindi are described in detail. Other elements are illustrated but not discussed at length. Non-platform elements have not been differentiated for each of the polygnathid species. No multi-element reconstructions have been attempted for coniform elements that have been illustrated (Pl. 41) but not described. Type and figured specimens are housed in the collections of the National Museum of Victoria, Melbourne (NMVP) and the Australian Museum, Sydney (AMF). Precise horizon and locality data for each sample number can be obtained by reference to text-figs. 1–5 and tables 1–6.

Family HIBBARDELLIDAE Müller, 1956

Genus OULODUS Branson and Mehl, 1933

1933 *Oulodus* Branson and Mehl, p. 116.

1935a *Gyrogynathus* Stauffer, p. 144.

1969 Ligonodina Bassler; Jeppson, pp. 20–21.
1971 Deloaxta Klapper and Philip, p. 446.

Type species. Oulodus serratus (Stauffer, 1930).

Remarks. For discussion of the genus and variation within it, see Mawson (1986).

Oulodus murrindalensis (Philip, 1966)

Plate 31, figs. 1–9
1966 L Gonodina n. sp. Philip, p. 446, pl. 3, fig. 24 (non figs. 19 and 20) [Pa element].
1966 L Gonodina murrindalensis n. sp. Philip, p. 446, pl. 4, figs. 9–14 [Pb element].
1966 Plecostaprodus ex u s n. sp. subsp. Philip, p. 448, pl. 1, figs. 25–28 [M element].
1966 Trichonodella sp. cf. T. inconstans Walliser; Philip, p. 451, pl. 2, figs. 24 and 25 [Sc element].
1966 Hindodella equidentata Rhodes; Philip, p. 445, pl. 3, fig. 1 [Sc element].

Holotype. Specimen 8850/32 (Philip 1966, pl. 4, figs. 9, 10, 12) from the Murrindal Limestone (Loc. 6 of Philip 1966, text-fig. 1; see also text-fig. 1 herein) of Buchan, Victoria.

Diagnosis. A species of Oulodus in which all elements are characterized by the irregularity in size and arrangement of denticles, and the deeply excavated basal cavity beneath each element.

Material. Six specimens of the Pa element from four localities; seventy-three non-platform elements from twenty-two localities (Tables 1–4).

Discussion. Except for the Sb element, all elements of O. murrindalensis were figured by Philip (1966) in his study of the conodont faunas from the Buchan Group. The Sb element is digyrate (‘Lionchodoniform’) and, like the Sa element (alaate—‘Trichonodelliform’) and the Sc elements (bipenate—‘Ligonodiniform’) of the symmetry transition series, has irregularly spaced denticles of varying sizes, some discrete and some tending to be fused at their bases. Specimens of O. murrindalensis collected by Philip (1966) were confined to the perbonus Zone. This study shows the highest occurrence of O. murrindalensis as bed 8.12 in the Gelantipy Road section within the perbonus Zone. The first occurrence is in bed OTRC 2, low in the Taravale Formation at Buchan, and in sample BON 25–27.5, high in the Buchan Caves Limestone at Bindi, confirming its presence also in the dehiscens Zone.

The irregularity of denticulation in O. murrindalensis clearly separates it from older species of Oulodus described from Windellama, New South Wales (Mawson 1986).

Family POLYGONATHIDAE Bassler, 1925
Genus POLYGONATHUS Hinde, 1879

Type species. Polygonathus dubius Hinde, 1879.

Discussion. See Klapper in Ziegler (1973) for discussion of the genus. Pa elements of P. dehiscens dehiscens, P. d. abyssus, P. perbonus, P. nothoperbonus, P. inversus, P. labiosus, P. serotinus, and P. pseudoserotinus are described below in full. The non-platform elements (Klapper and Philip 1971; Klapper in Ziegler 1973) have been described previously (see Philip 1966) and are illustrated herein (Pl. 36, figs. 11–18). As the majority of conodonts for this study were recovered from the nodular limestone within the sequence of mudstones, shales, and impure limestones of the Taravale Formation at Buchan and Bindi, it is not surprising that the numbers of specimens, especially the less robust non-platform elements, are relatively low. It is surprising, however, that only seven specimens of the Sa (alaate—‘Diplodellan’-type) element of the polygonathid apparatuses have been recovered from the 352 samples that yielded conodonts for this study. Philip (1966) recorded the presence of the Sa element, ‘Roundy perbona’ from the Murrindal Limestone but not from the Buchan Caves Limestone at Buchan, negative evidence consistent with a pre-dehiscens Zone age for the faunas of the Buchan Caves Limestone at Buchan. As discussed earlier, the uppermost Buchan Caves Limestone at Bindi, containing both P. dehiscens and P. perbonus, is younger than the top of the Buchan
Caves Limestone at Buchan. From both high and low in the sections at Wee Jasper, New South Wales, rare occurrences of the Sα element, ‘*Hibbardella per bona*’ have been reported (Pedder, Jackson and Philip 1970). Altogether 711 polygnathid Pa elements that can be speciated with certainty from ninety-eight localities (Tables 5 and 6), a further forty-three Pa elements that cannot be assigned with certainty because of preservation, juvenile forms, etc., and 459 non-platform elements from 105 localities (Tables 1–4) have been recovered from Buchan and Bindi localities.

Polygnathus dehiscens Philip and Jackson, 1967

Amended diagnosis. Pa elements have a large basal cavity occupying most of platform except for crimp. Cavity is V-shaped or flat or in form of extremely shallow trough at posterior end.

Discussion. This study shows that the profile of the basal cavity of *P. dehiscens* varies from flat to distinctly V-shaped, and on this basis two subspecies are distinguished: the nominate subspecies and *P. dehiscens* abyssus* n. subsp.*

Polygnathus dehiscens dehiscens Philip and Jackson, 1967

Plate 32, figs. 1–10; Plate 36, fig. 6

1967 *Polygnathus linguiformis linguiformis* Hinde; Adrichem Boogaert, p. 184, pl. 3, fig. 1.
1967 *Polygnathus linguiformis dehiscens* n. subsp. Philip and Jackson, p. 1265, figs. 2i–k (listed incorrectly as h–j in figure caption), 3a.
1969 *Polygnathus lenzi* n. sp. Klapper, pp. 14–15, pl. 6, figs. 9–18.
1969 *Polygnathus linguiformis foveolata* Philip and Jackson; Carls and Gandl, p. 196, pl. 18, figs. 14–19, 22.
1970 *Polygnathus linguiformis dehiscens* Philip and Jackson; Philip and Jackson in Pedder, Jackson and Philip, p. 216, pl. 40, figs. 18, 20.
1971 *Polygnathus dehiscens* Philip and Jackson; Fähræus, pp. 677–678, pl. 77, figs. 1–12.
1972 *Polygnathus lenzi* Klapper; Uyeno in McGregor and Uyeno, p. 14, pl. 5, figs. 10–12.
1974 *Polygnathus dehiscens* Philip and Jackson; Klapper in Perry et al., p. 1087.
1975 *Polygnathus dehiscens* Philip and Jackson; Klapper and Johnson, pp. 72, 73, pl. 1, figs. 1–8, 13–16.
1976 *Polygnathus dehiscens* Philip and Jackson; Lane and Ortman, pl. 1, figs. 17–20.
1976 *Polygnathus dehiscens* Philip and Jackson; Bultynck, pl. 11, figs. 1–15.
1977 *Polygnathus dehiscens* Philip and Jackson; Klapper in Ziegler, pp. 447–448, *Polygnathus* pl. 8, figs. 7 and 8.
1977 *Polygnathus dehiscens* Philip and Jackson; Savage, pl. 1, figs. 29–36.
1978 *Polygnathus dehiscens* Philip and Jackson; Apekina and Masskova, pl. 74, figs. 1, 9; pl. 75, figs. 1 and 2.
1979 *Polygnathus dehiscens* Philip and Jackson; Lane and Ortman, pl. 5, figs. 24–26, 35, 36.

Explanation of Plate 31

Figs. 1–9. *Oulodus marrindalensis* (Philip). Pa elements: 1, NMVP 99075, sample SLO 200, × 45. 2, NMVP 99076, sample SLO 60, × 45. Pb elements: 3, NMVP 99077, sample OTRC 2, × 60. 4, NMVP 99078, sample OTRC 2, × 60. M element: 7, NMVP 99079, sample OTRC 2, × 45. Sb elements: 8, NMVP 99080, sample SLO 130, × 45; 9, NMVP 99081, sample SLO 10, × 45. Sc elements: 5, NMVP 99082, sample SLO 60; 6, NMVP 99083, sample SLO 52, × 45.

MAWSON, Oulodus, Ozarkodina
1980 *Polygnathus dehiscens* Philip and Jackson; Bultynck and Hollard, pl. 2, fig. 5.
1980 *Polygnathus dehiscens* Philip and Jackson; Uyeno and Klapper, pl. 8.1, figs. 1–4.
1980 *Polygnathus dehiscens* Philip and Jackson; Xiong in Xian et al., pl. 22, figs. 1–4, 9–12, 19, 20.

Diagnosis. 'Representative Pa elements of *Polygnathus dehiscens dehiscens* have a large basal cavity occupying most of platform except for crimp. Cavity is flat or in form of extremely shallow trough at posterior end.' (Klapper in Ziegler 1977, p. 447.)

Material. Twenty-seven specimens from eleven localities; twenty-eight specimens transitional between *P. dehiscens dehiscens* and *P. nothoperbonus* from seventeen localities (Tables 5 and 6).

Discussion. In the material examined from Buchan and Bindi, two clusters of specimens can be distinguished: one in which specimens have a flat basal cavity, and one in which specimens have a deep V-shaped basal cavity. As a polygnathid lineage arises from each of these forms, the configuration of the basal cavity is taken as a sufficient criterion on which to base two subspecies, forms with the deeper cavity being discriminated as a new subspecies, *P. dehiscens abyssus*, described below.

Polygnathus dehiscens abyssus subsp. nov.

Plate 34, figs. 1–7; Plate 36, fig. 1

1969 *Polygnathus linguiformis dehiscens* Philip and Jackson; Flood, p. 9, pl. 2, figs. 1–6.
1970 *Polygnathus linguiformis dehiscens* Philip and Jackson; Philip and Jackson in Pedder, Jackson and Philip, pl. 40, figs. 21 and 23.

Derivation of name. abyssus (Lat.) = deep, in reference to the deep, V-shaped basal cavity.

Holotype. AMF 66031 (Pl. 34, figs. 3 and 4) from the Buchan Caves Limestone, 11–4 to 12–3 m above the base of the BON section (sample BON 36–39) at Bindi, Victoria.

Material. Seventy-eight specimens from twenty-four localities; thirty-three specimens transitional between *P. dehiscens abyssus* and *P. perbonus* from nineteen localities (Tables 5 and 6).

Diagnosis. Pa elements have basal cavity occupying most of the platform except for the crimp with lips of the basal cavity forming a V-shaped profile in cross section.

Discussion. Specimens previously designated *P. dehiscens* from the Lick Hole Limestone at Ravine, New South Wales have a deeper basal cavity than specimens illustrated from Taemas, New South Wales; compare specimens from Ravine (Flood 1969, pl. 11, figs. 5 and 6; Philip and Jackson in Pedder, Jackson and Philip 1970, pl. 40, fig. 23) with material from the Cavan Limestone, Taemas (Ibid. pl. 40, fig. 20—aboral view of holotype), Collections made by Flood and Philip and Jackson from Ravine, and by Philip and Jackson from Taemas, were examined at Sydney University and New England University, Armidale in order to confirm the above.

EXPLANATION OF PLATE 32

Figs. 1–10. *Polygnathus dehiscens dehiscens* Philip and Jackson. 1 and 2, lower and upper views of AMF 66007, sample 717.7, a specimen transitional between *P. pioreae* and *P. d. dehiscens*, × 60. 3 and 4, lower and upper views of AMF 66008, sample OTRC 5, × 60. 5, lower view of AMF 66009, sample OTRC 5, × 60. 6–10, specimens transitional between *P. d. dehiscens* and *P. nothoperbonus*. 6 and 7, lower and upper views of AMF 66013, sample 810.2, × 60; 8, lower view of AMF 66010, sample 8.9, × 75; 9 and 10, upper and lower views of AMF 66011, sample Ma7, × 60.

Figs. 11–15. *P. nothoperbonus* sp. nov. 11 and 12, upper and lower views of AMF 66016, sample BON 46-50, × 60. 13, lower view of AMF 66015, sample OTRC 16, × 60. 14 and 15, lower and upper views of AMF 66018, sample 8.9.2, × 45.
Polygnathus inversus Klapper and Johnson, 1975

Plate 33, figs. 3–8; Plate 36, figs. 8 and 9

Synonymy. See Klapper and Johnson (1975, p. 73; 1980, p. 453).

Material. Seventy-eight specimens from thirteen localities; forty-one specimens transitional between P. inversus and P. serotonus from nine localities (Tables 5 and 6).

Discussion. Specimens of P. inversus from Buchan and Bindi show the same range of variation as the Nevada material (Klapper and Johnson 1975), from P. inversus s. s. to forms transitional to P. serotonus in which an incipient bulge surmounted by a lip is noticeable on the outer side of the basal pit, but the height of the inner and outer margin on the oral surface anterior of the angular deflection of the platform is still the same. The pit, anterior groove, and posterior keel area are bounded by narrow bands of lamellae edge (inverted area) indicative of the plane of attachment of the basal body.

Polygnathus labiosus sp. nov.

Plate 35, figs. 1–9; Plate 36, figs. 3 and 4

Derivation of name. labiosus (Lat.) = large-lipped, in reference to the flared nature of the flanks of the basal cavity.

Holotype. AMF 66043 (Pl. 35, figs. 5 and 6) from the Taravale Formation, 340–5 m above the base of the Gelantipy Road section (sample 15.2) at Buchan, Victoria.

Diagnosis. Pa elements have a basal cavity with large flaring lips in the centre of the unit anterior to the inward deflection of platform. Cavity is joined posterior of lips and extends as groove anterior of lips. Transverse ridges cross posterior third of platform and can be either complete or interrupted.

Material. Forty-two specimens from twelve localities; twenty-eight specimens transitional between P. labiosus and P. pseudoserotonus from nine localities (Tables 5 and 6).

Discussion. The strong inwardly deflected posterior platform of P. labiosus shows the same variation in arrangement of transverse ridges as in P. perbonus. The parallel striations of lamellae bounding the posterior keel and cavity in P. inversus are not developed in P. labiosus as the basal body material is restricted to the interior of the lips of the basal cavity and does not extend to the posterior as in P. inversus. The flaring lips of P. labiosus are accentuated in specimens where basal body material is preserved (Pl. 35, fig. 2) but is clearly differentiated from the extended lips of P. labiosus by the manner of attachment, composition, and colour. There is a gradation from P. perbonus to P. labiosus, but the latter can be easily distinguished by the extended lips of the basal cavity.

EXPLANATION OF PLATE 33

Figs. 1 and 2. Polygnathus nothoperbonus sp. nov. Upper and lower views of AMF 66020, sample T3, a specimen transitional between P. nothoperbonus and P. inversus, ×60. Figs. 3–8. P. inversus Klapper and Johnson. 3 and 4, lower and upper views of AMF 66033, sample T3, ×75. 5, lower view of AMF 66021, sample T2, ×75. 6–8, specimens transitional between P. inversus and P. serotonus. 6 and 7, lower and upper views of AMF 66024, sample T3, ×90; 8, lower view of AMF 66026, sample T3, ×90.

Figs. 9–12. P. serotonus 'delta morphotype' Telford. 9, lower view of AMF 66027, sample EB 3, ×75. 10, lower view of AMF 66028, sample T3, ×45. 11 and 12, lower and upper views of AMF 66029, sample T2, ×90.
MAWSON, Polygnathus
Polygnathus nothropbonus sp. nov.

Plate 32, figs. 11–15; Plate 33, figs. 1 and 2; Plate 36, fig. 7

1975 Polygnathus aff. P. perbonus (Philip); Klapper and Johnson, p. 74, pl. 2, figs. 1–10.
1979 Polygnathus aff. P. perbonus (Philip); Lane and Orniston, p. 62, pl. 8, figs. 26 and 27.
1980 Polygnathus aff. P. perbonus (Philip); Uyeno and Klapper, pl. 8.1, figs. 5 and 6; pl. 8.3, figs. 11 and 12.

Derivation of name. notho (Gr.) = spurious, bastard, in reference to its superficial similarity to P. perbonus.

Holotype. University of Iowa 38018 (Klapper and Johnson 1975, pl. 2, figs. 7 and 8) from the Baratine Member of McColley Canyon Formation at Lone Mountain, Nevada (J-36-73, 172 m above formation base at loc. 1 of Klapper and Johnson 1975, fig. 2).

Diagnosis. Representative Pa elements of P. nothropbonus have a medium-sized basal cavity expanded beneath the central part of the platform anterior of the sharp, inward deflection of the platform, inverted posteriorly, and extended anteriorly as a narrow groove. The cavity is flat or shallow. Transverse ridges crossing posterior third of oral platform usually interrupted. Anterior outer platform margin at about same height as inner margin.

Material. Ninety-four specimens from thirty-two localities; thirty-one specimens transitional between P. nothropbonus and P. inversus from thirteen localities (Tables 3 and 6).

Discussion. P. aff. P. perbonus (sensu Klapper and Johnson 1975) is here given specific status for the following reasons: it can be clearly separated from P. perbonus by its shallow basal cavity, the lips (or lateral flanks) of which are only slightly V-shaped, and by the clear inversion of the posterior portion of the cavity; and it completes the P. serotinus lineage. In their original description and diagnosis of P. perbonus, Philip and Jackson (1967, p. 1265) made no special mention of the oral ornamentation, although Klapper and Johnson (1975), in an amended diagnosis of the form, stated that ‘Transverse ridges cross [the] posterior third of the platform’. They remarked that although P. perbonus had not been found in Nevada, P. aff. P. perbonus had, the latter having a shallower basal cavity and showing some variation in the posterior transverse ridges compared with P. perbonus ‘in which the transverse ridges are not interrupted’.

From a study of polygnathid faunas from Buchan, and especially from collections of toptype material from the Marriand Limestone (Hyland and Mawson, in prep.), it appears that P. perbonus exhibits variation in arrangement of the posterior transverse ridges on its oral surface. Text-fig. 8 compares oral views of the holotype of P. linguiformis foevolata Philip and Jackson (= P. perbonus) and specimens of P. aff. P. perbonus from Nevada. It appears that the variation in the transverse ridges in P. aff. P. perbonus falls within the range of variation shown by P. perbonus. The difference then between P. perbonus and P. aff. P. perbonus (sensu Klapper and Johnson 1975) is the depth of the basal cavity, and it is on the basis of this feature that P. nothropbonus sp. nov. is herein erected to include P. aff. P. perbonus.

From the Buchan and Bindi material it is clear that P. nothropbonus is intermediate between P. dehiscens dehiscens and P. inversus, the latter showing complete inversion of the basal cavity posterior to the cavity pit. The oral ornamentation of P. nothropbonus shows the same variation as P. inversus. The occurrence of P. nothropbonus elsewhere (e.g. Sor Fiord, Ellesmere Island; see Uyeno and Klapper 1980, p. 85), entirely below the first occurrence of P. inversus and occurring together with P. inversus (e.g. Blue Fiord, Ellesmere Island; Uyeno and Klapper 1980), lends support to the reality of the dehiscens dehiscens → serotinus lineage occurring both in the northern hemisphere and in Australia.

Polygnathus perbonus (Philip, 1966)

Plate 34, figs. 8–13; Plate 36, fig. 2

Material. 159 specimens from thirty-three localities (Tables 5 and 6).

Discussion. *P. perbonus* is characterized by a medium-sized, V-shaped basal cavity expanded beneath the central part of the platform anterior of the sharp inward deflection of the platform and continuing posteriorly as a keel, where the basal cavity has 'seamed' together. There appear to be no parallel striations flanking the keel as basal body material is restricted to the inner portion of the cavity. Although Philip (1966, p. 448) noted that 'deflected posterior portion of platform bears transverse ridges', he illustrated (1966, pl. 2, figs. 35, 36, 39) specimens where these transverse ridges are not continuous; the specimen he illustrated as pl. 2, fig. 36 was later chosen as the holotype for *P. foveolatus* (= *P. perbonus*) by Philip and Jackson (1967). The posterior portion of the platform of *P. perbonus*, therefore, is characterized by transverse ridges which are not always continuous (see above, in discussion of oral ornamentation of *P. nothoperbonus*).

Polygonathus pseudoserotinus sp. nov.

Plate 35, figs. 10–12; Plate 36, fig. 5

1979 *Polygonathus serotinus* alpha morphotype Telford; Lane and Ormiston, p. 63, pl. 7, figs. 13 and 37.

Derivation of name. *pseudo* (Gr. *pseudē*) = false, in reference to superficial similarity to *P. serotinus* Telford.

Holotype. AMF 66049 (Pl. 35, figs. 11 and 12) from the Taravale Formation, 371 m above the base of the East Buchan section (sample EB 3) at Buchan, Victoria.

Diagnosis. Pa elements have small pit located slightly anterior of inward deflection of platform. On outer side of pit, a small, subcircular, shelf-like protuberance is suspended above platform. Cavity is entirely joined posterior of pit and extends anteriorly of pit as shallow groove. Anterior outer margin is higher and wider than inner margin.

Material. Thirteen specimens from seven localities (Tables 5 and 6).

Discussion. Although there is a superficial similarity between *P. pseudoserotinus* and *P. serotinus*, the main difference lies in the nature and mode of formation of the tiny lip on the outer side of
the basal pit. In *P. pseudoserotinus* the lip is suspended above the platform rather than supported by a solid buttress of platform material, as occurs in *P. serotinus*. Plate 35, fig. 11 shows the lack of exposed edges of lamellae in the zone parallel to the keel in *P. pseudoserotinus* compared with the clear development of this zone in *P. serotinus* (Pl. 33, figs. 9 and 11). Lane (in Lane and Ormiston 1979) noted this difference when distinguishing two of his three morphotypes of *P. serotinus* in the Salmontrouth River area, Alaska. Unfortunately, his collections did not include sufficient material to see how each evolved from *P. dehiscens*: one by inversion of the basal cavity (sensu Lindström 1964), the other by seaming-up of the basal cavity. It could be that specimens described by Wang (1979) as *P. declinatus*, and later assigned by Uyeno and Klapper (1980) to *P. inversus* transitional to *P. serotinus*, belong to the new species *P. pseudoserotinus*. Wang’s description (1979, p. 407) fits that of *P. pseudoserotinus* but it is not clear from his pl. 1, figs. 12–22 whether the ‘flange-like anterior outer margin’ has resulted from inversion or ‘seaming-up’ of the basal cavity. His line drawing (Wang 1979, fig. 3, p. 402) appears to indicate some inversion; if this is so, his specimens should remain assigned to *P. inversus* transitional to *P. serotinus*, but it not, *P. declinatus* has priority over *P. pseudoserotinus*.

Polygnathus serotinus Telford, 1975

Discussion. Occurring in most instances with *P. inversus*, the specimens of *P. serotinus* recovered from Buchan and Bindi are the ‘early’ form and match very closely with Telford’s type material from the Dip Creek Limestone Member of the Broken River Formation, north Queensland (Telford 1975, pl. 7, figs. 5–8). Lane (in Lane and Ormiston 1979, p. 63) recognized three morphotypes of *P. serotinus*: ‘alpha morph’ in which ‘the protuberance on the lower side usually is formed as a shelf-like extension of the basal pit . . .’; ‘delta morph’ in which ‘the protuberance is formed as a shelf-like extension of the basal pit that is supported in its entire extent by a solid shaft . . .’; and ‘gamma morph’ with its rounded or quadrate outline and a protuberance consisting of ‘both a bulge in the platform proper and a remnant shelf-like extension of the basal pit’. Lane and Ormiston’s (1979) ‘alpha morph’ has been described herein as *P. pseudoserotinus* as it belongs to a different lineage to *P. serotinus* s. s., having evolved from the *dehiscens abyssus* stock by the ‘seaming up’, rather than inversion, of the basal cavity.

‘gamma morphotype’

1978 *Polygnathus serotinus* Telford; Klapper et al., pl. 1, figs. 9 and 10 [Pa element].
1978 *Polygnathus serotinus* Telford; Apekins and Mashkova, pl. 77, fig. 6 (non figs. 1 and 2).
1979 *Polygnathus serotinus* gamma morphotype Telford; Lane and Ormiston, p. 63, pl. 8, figs. 2, 6, 13–16, 19–22, 32, 33 [Pa elements].
1980 *Polygnathus serotinus* Telford; Xiong, pp. 97–98, pl. 25, figs. 17–20 [Pa element].

Diagnosis. A morphotype of *P. serotinus* characterized by ‘a rounded or quadrate outer margin at the point of junction of the small posterior platform and the main platform. On the lower surface, the protuberance consists of both a bulge in the platform proper and a remnant shelf-like extension of the basal pit’ (Lane and Ormiston 1979).

Explanation of Plate 34

Figs. 1–7. *Polygnathus dehiscens abyssus* subsp. nov. 1 and 2, lower and upper views of AMF 66031, sample BON 36–39, ×75. 3 and 4, upper and lower views of AMF 66031, sample BON 36–39, holotype, ×60. 5, lower view of AMF 66032, sample OTRC 5, ×60. 6 and 7, specimen transitional between *P. d. abyssus* and *P. perbonus*, upper and lower views of AMF 66034, sample OTRC 5, ×60.

Figs. 8–13. *P. perbonus* (Philip). 8 and 9, upper and lower views of AMF 66035, sample BON 46–50, ×60. 10 and 11, lower and upper views of AMF 66036, sample BCE 20, ×60. 12 and 13, upper and lower views of AMF 66037, sample 15.2, ×90.
Discussion. As no specimens of *P. serotonus* ‘gamma morph’ have been found in association with *P. serotonus* ‘delta morph’ in the Buchan and Bindi region, it may be that the former is found only in the upper part of the *serotonus* Zone. If this can be proved, a subdivision of the *serotonus* Zone may be possible. Until further sampling is carried out, both in Victoria and in areas such as the Broken River region, the potential for this remains uncertain. Specimens illustrated by Xiong (1980) from south China show the typical rounded posterior margin of this morphotype. In his discussion of *P. serotonus*, Xiong suggested that specimens having a rounded margin might be separated from those with a straight posterior margin; he did not, however, indicate at what level this separation should be regarded—morphotype, subspecies, or species.

‘delta morphotype’

Plate 33, figs. 9–12; Plate 36, fig. 10

1967 *Polygnathus linguiformis linguiformis* Hinde; Philip and Jackson, pp. 13–14, text-fig. 2a (non 2b, 2c).

1970 *Polygnathus linguiformis linguiformis* Hinde; Philip and Jackson in Pedder, Jackson and Philip, pp. 216–217, pl. 40, figs. 6 and 8 (non figs. 9 and 10).

1974 *Polygnathus perbonus* n. subsp. D, Klapper in Perry et al., pp. 1089 and 1091, pl. 8, figs. 9–13, 15, 16.

1975 *Polygnathus* sp. nov. D, Klapper and Johnson, pp. 74, 75, pl. 3, figs. 1, 2, 8–10.

1974 *Polygnathus foveolatus serotonus* subsp. nov. Telford, pp. 43 and 44, pl. 7, figs. 5–8 (non figs. 1–4).

1975 *Polygnathus totensis* sp. nov. Snigireva, p. 27, pl. 4, figs. 3 and 4.

1976 *Polygnathus serotonus* Telford; Bultynck, pl. 10, fig. 23; pl. 11, fig. 21.

1976 *Polygnathus foveolatus* Telford; Fordham, pl. 5, figs. 5–8, 15, 16, 29, 30, 34 (non figs. 9, 10, 13, 14, 31, 33).

1977 *Polygnathus serotonus* Telford; Weddige, pp. 319–320, pl. 4, figs. 77–79.

1977 *Polygnathus serotonus* Telford; Klapper in Ziegler, pp. 495–496, *Polygnathus* pl. 9, figs. 4 and 5.

1978 *Polygnathus serotonus* Telford; Pickett, pl. 1, figs. 23–25; pl. 2, fig. 18.

1978 *Polygnathus serotonus* Telford; Klapper et al., pl. 1, figs. 30 and 31 (non figs. 9 and 10).

1978 *Polygnathus serotonus* Telford; Apekina and Mashkova, pl. 76, fig. 9; pl. 77, figs. 1 and 2 (non fig. 6).

1979 *Polygnathus serotonus* delta morphotype Telford; Lane and Ormiston, p. 63, pl. 8, figs. 8–10, 34, 35.

1980 *Polygnathus serotonus* Telford; Xiong, pp. 97–98, pl. 23, figs. 1–8; pl. 25, figs. 5–16, 23, 24, 26, 27 [Pa elements].

Amended diagnosis (modified from Klapper in Ziegler 1977 and Lane and Ormiston 1979). Pa elements have a small pit located just anterior to the sharp inward deflection of the keel. Small, subcircular, shelf-like protuberance, supported in its entire extent by a solid shaft from the main platform’s lower surface, occurs on the outer side of the pit. Cavity entirely inverted posterior of pit. Flange-like anterior outer margin is distinctly higher than carina and inner margin, and separated from carina by wide, deep, adcarinal trough.

EXPLANATION OF PLATE 35

Figs. 1–9. *Polygnathus labiosus* sp. nov. 1 and 2, upper and lower views of AMF 66041, sample BON 46–50, × 60. 3 and 4, upper and lower views of AMF 66044, sample 15.2, × 60. 5 and 6, lower and upper views of AMF 66043, holotype, sample 15.2, × 90. 7–9, specimens transitional between *P. labiosus* and *P. pseudoserotonus*. 7, lower view of AMF 66045, sample 15.06, × 90; 8, lower view of AMF 66046, sample 16.01, × 90; 9, lower view of AMF 66047, sample EB 5, × 90.

Figs. 10–12. *P. pseudoserotonus* sp. nov. 10, lower view of AMF 66048, sample 15.01, × 75. 11 and 12, lower and upper views of AMF 66049, sample EB 3, holotype, × 90.
Material. Fifteen specimens from five localities (Tables 5 and 6).

Discussion. Most specimens from Buchan and Bindi, Victoria, and the Broken River, north Queensland, belong to Lane’s ‘delta morphotype’; a small number of specimens fitting Lane’s ‘gamma morphotype’ definition are found in Broken River. Forms transitional between P. inversus and P. serotinus occur with P. serotinus delta morph low in the section at Jesseys Springs; they are included with the latter because they share more characteristics diagnostic of P. serotinus than P. inversus. On their upper surface the outer margin is somewhat higher than the inner margin and the carina, and a deep adcarinal trough is developed between the carina and the outer margin, reminiscent of P. serotinus. Posterior to the pit on the lower surface, however, the cavity is not completely inverted, and the distinctive lip of P. serotinus is not fully developed.

Genus Ozarkodina Branson and Mehl, 1933

Type species. Ozarkodina typica Branson and Mehl, 1933.

Discussion. The multi-element composition of Ozarkodina is as follows: Pa element is carminate (‘spathognathodontan’); Pb element is angulate (‘ozarkodidan’); M element is dolabrate (commonly ‘neopriorniodontan’ or less commonly ‘synprioniodontan’); Sa element is alate (‘trichonodellar’); Sb element is bipinnate (‘hindeedellar’); Sc element is digirate (‘plectospilodontan’). The only basis for differentiating Pandorinellina and Ozarkodina is the Sa element: in Ozarkodina the posterior process is expressed only by a slight swelling on the posterior base of the cusp (‘trichonodellar’ element) whereas in Pandorinellina the posterior process is well developed (‘diploidellar’ element) (Klapper and Philip 1971; Klapper in Ziegler 1973). Pandorinellina n. sp. O of Klapper (1977) is referred to Ozarkodina because there is a dearth of ‘diploidellar’ elements in the conodont faunas at Buchan and Bindi, and, moreover, a ‘trichonodellar’ form that conforms with the symmetry transition series is available.

Ozarkodina buchanensis (Philip, 1966)

Plate 37

1966 Ozarkodina denckmanni Ziegler; Philip, pp. 446–447, pl. 4, figs. 16 and 17 (non figs. 15, 18–20) [Pb element].

1966 Neopriorniodus bicurvatus (Branson and Mehl); Philip, p. 446, pl. 3, figs. 14–16 (non figs. 12 and 13) [M element].

EXPLANATION OF PLATE 36

Fig. 1. Polygnathus dehiscens abyssus subsp. nov., lower view of NMV 99001, sample SLO 60, ×45.

Fig. 2. P. perbonus (Philip), lower view of NMV 99002, sample OTRC 5, ×60.

Figs. 3 and 4. P. labiosus sp. nov. 3, lower view of NMV 99003, sample 15.2, ×45. 4, lower view of specimen transitional between P. labiosus and P. pseudoserositum, NMV 99004, sample 15.2, ×60.

Fig. 5. P. pseudoserositum sp. nov., lower view of NMV 99005, sample SALC 6, ×60.

Fig. 6. P. dehiscens dehiscens Philip and Jackson, lower view of NMV 99006, sample OTRC 5, ×45.

Fig. 7. P. nothoperbonus sp. nov., lower view of NMV 99007, sample BON 60.5–65, ×60.

Figs. 8 and 9. P. inversus Klapper and Johnson, 8, lower view of NMV 99008, sample T3, ×90. 9, lower view of specimen transitional between P. inversus and P. serotinus, NMV 99009, sample EB 3, ×45.

Fig. 10. P. serotinus ‘delta morphotype’ Telford, lower view of NMV 99010, sample T3, ×45.

Figs. 11–18. P. spp. Pb elements: 11, NMV 99011, sample OTRC 1, ×45; 12, NMV 99012, sample OTRC 1, ×45; 13, NMV 99013, sample OTRC 1, ×45; 14, NMV 99014, sample SLO 60, ×45. M elements: 15, NMV 99015, sample Ma 10, ×45; 16, NMV 99016, sample Ma 10, ×45. Sb element: 18, NMV 99018, sample SB40.60, ×45. Sc element: 17, NMV 99017, sample Ma 2, ×45.
1966 *Trichonodella symmetrica pinnula* n. subsp. Philip, pp. 452–453, pl. 4, figs. 1–6 [Sa element].
1966 *Plecostomodus alternatus* Walliser; Philip, p. 448, pl. 3, figs. 10, 17, 21, 25 [Sb elements].
1966 *Hindeodella prisca* Staufert; Philip, p. 445, pl. 3, figs. 2, 7, 9 (non figs. 6, 8, 11, 18) [Sc elements].
1970 *Spathognathodus steinhorrensis optimus* Moskalenko; Pedder, Jackson and Philip, p. 218, pl. 38, figs. 4–6 (non figs. 7, 10–12) [Pa element].
1971 *Ozarkodina buchanensis* (Philip); Klapier and Philip, p. 448, fig. 10 [Pa, Pb, M, Sa, Sb, Sc elements].
1973 *Spathognathodus steinhorrensis* cf. *buchanensis* Philip; Cooper, p. 80, pl. 2, figs. 8, 9, 12; pl. 3, figs. 2–5 [Pa element].
1979 *Ozarkodina buchanensis* (Philip); Lane and Ormiston, pp. 54–55, pl. 2, figs. 32 and 35; pl. 3, fig. 13 [M, Sa, Pa elements].

Material. 385 specimens of the Pa element from sixty localities; 183 non-platform elements from fifty-four localities (Tables 1 and 4).

Discussion. This apparatus, a Type 1 apparatus of Klapier and Philip (1972), was first illustrated from material collected from the top of the Buchan Caves Limestone (Philip 1966). Material from a stratigraphically similar locality, both above and below the contact of the Buchan Caves Limestone and the Taravale Formation at Murridal ('P' section; text-figs. 1 and 5), has yielded a similar fauna with Pa, Pb, and Sc elements represented. In faunas from the basal Taravale Formation at Slocombles (SLO section; text-fig. 1) all elements are present. The highest occurrence of *O. buchanensis* is in bed 7.14.4 in the Gelandtivy Road section at Buchan (text-figs. 1 and 4) showing that, at Buchan at least, it does not range higher than the *dehiscent* Zone.

The older species *O. remschidensis remschidensis* closely resembles *O. buchanensis* but they can be differentiated by the more strongly recurved lateral processes, smaller pit, and more compressed cusp of the Sa element of the latter (Klapier in Ziegler 1975, p. 215), and by the shorter, higher blade and the more centrally positioned basal cavity of the Pa element. *O. remschidensis repetitor* also resembles *O. buchanensis*, but the lack of symmetry in the arrangement of the denticles of the latter separates the two. *O. buchanensis* is younger than the two subspecies of *O. remschidensis*, the highest occurrence of *O. r. remschidensis* being in the delta Zone (Klapier and Johnson 1980, p. 416) and the highest occurrence of *O. r. repetitor* in the pesavis Zone (Klapier and Johnson 1980, p. 417) (text-fig. 9).

Bed-by-bed sampling of the Buchan Caves Limestone at Buchan, Bindy, and The Basin is in progress; this should provide more precision for the lower limit of the range of *O. buchanensis*. The fauna from Loyola, Victoria (Cooper 1973), incidentally, contains thirty-six specimens of *O. buchanensis* occurring with *Polygnathus pirenae* Boermsea (identified by Cooper as *Spathognathodus trilinearis* sp. nov. and *P. sp.*, respectively). The occurrence of these forms together is indicative of the kindeli Zone (Klapier and Johnson 1980, p. 418).

EXPLANATION OF PLATE 37

Figs. 1–20. *Ozarkodina buchanensis* (Philip). Pa elements: 1–3, lateral, lower, and upper views of NMVP 99019, sample P 6.1; 4, upper view of NMVP 99020, sample P 6.1; 5 and 6, lateral and lower views of NMVP 99021, sample P 6.1; 7, lateral view of NMVP 99022, sample SLO 40–60; 8, lateral view of NMVP 99023, sample P 7.1; 9 and 10, lateral and lower views of NMVP 99024, sample P 4.1; 11, lateral view of NMVP 99025, sample SLO 60. Pb elements: 13, NMVP 99027, sample Ma 10; 14, NMVP 99028, sample SLO 250; 15, NMVP 99029, sample Ma 2. M elements: 16, NMVP 99030, sample Taravale Fm. below SB 1; 17, NMVP 99031, sample SLO 60. Sa element: 12, NMVP 99026, sample SLO 130. Sb element: 19, NMVP 99033, sample OTRC 2. Sc elements: 18, NMVP 99032, sample 8.5.2; 20, NMVP 99034, sample SLO 60.

All × 60.
MAWSON. Ozarkodina
TEXT-FIG. 9. Range chart of a selection of spathognathodontan (Pa) elements occurring in the Early Devonian. Conodont zones are after Klapper and Johnson (1980) with the Early Devonian-Middle Devonian boundary between *patulus* and *partitus* zones as determined by the International Subcommission on Devonian Stratigraphy in 1980 (Ziegler and Klapper 1985). Ranges shown as a solid bar are taken from Klapper and Johnson (1980); those with diagonal shading are additional information derived from this study (Tables 1–6).

Ozarkodina excavata excavata (Branson and Mehl, 1933)

Plate 31, figs. 10–16

Material. Nineteen specimens of the Pa element from seven localities; nineteen non-Pa elements from thirteen localities (Tables 1 and 4).

Discussion. *O. e. excavata* occurs low in the sections at Buchan and Bindi (*dehiscens* and low *perbonus* zones). Apart from the Sa element, all elements (Pa, Pb, M, Sb, Sc) are represented. Philip (1966) identified ‘S.’ *inclusius inclinatus* (Rhodes) [Pa element], ‘O.’ *media* Walliser [Pb element], and ‘Trichonodella’ *excavata* (Branson and Mehl) [Sa element] from McLarty’s ridge (Loc. 6), about the middle of the Murrindal Limestone (text-fig. 1). He also identified ‘Hindeodella’ *equi-dentata* Rhodes [Sc element] from the same locality and from the top of the Buchan Caves Limestone (Loc. 3), as well as ‘Neoprioriodus’ *bicuspidatus* (Branson and Mehl) [M element] from his Loc. 6, higher in

EXPLANATION OF PLATE 38

Figs. 1–17. *Ozarkodina linearis* (Philip). Pa elements: 1, lateral view of NMVP 99035, sample Shanahan Ls., × 45; 2, lateral view of NMVP 99036, sample BON 25-27.5, × 45; 3, lateral view of NMVP 99037, sample BON 60.5–65, × 45; 4, lateral view of NMVP 99038, sample SLO 60, × 45; 5, lower view of NMVP 99039, sample BON 36–39, × 45; 6, lateral view of NMVP 99040, sample SLO 220, × 45; 7, upper view of NMVP 99041, sample SLO 60, × 45; 8, lateral view of NMVP 99042, sample BON 60.5–65, × 60; 9 and 10, lower and lateral views of NMVP 99043, sample BON 60.5–65, × 60. Pb elements: 11, NMVP 99044, sample SLO 60, × 45; 12, NMVP 99045, sample Ma 10, × 45. M element: 14, NMVP 99046, sample Ma 10, × 45; Sa element: 13, NMVP 99047, sample Ma 10, × 45. Sb element: 15, NMVP 99048, sample Forrest Motel, × 45. Sc elements: 16, NMVP 99049, sample Ma 10, × 45; 17, NMVP 99050, sample Ma 10, × 45.
the Murrindal Limestone at his Locs. 7 and 8, and from the top of the Buchan Caves Limestone at his Locs. 2 and 3. Klapper and Johnson (1980, table 5, p. 419) concluded that O. e. excavaata persists as high as the perbonus Zone at Wee Jasper, New South Wales. Its occurrence at Buchan in the perbonus Zone is therefore not surprising.

Ozarkodina linearis (Philip, 1966)

Plate 38

1966 Eognathodus linearis n. sp. Philip, pp. 444-445, pl. 4, figs. 33-36; text-fig. 3 [Pa element].
1966 Ozarkodina sp. cf. O. jaegeri Walliser; Philip, p. 447, pl. 4, figs. 31 and 32 [Pb element].
1966 Trichonodella inconstans Walliser; Philip, p. 451, pl. 4, figs. 21, 23, 27 (non figs. 20) [Sa element].
1966 Lonchodina n. sp. Philip, p. 446, pl. 3, fig. 19 (non figs. 20 and 24) [Sb element].
1966 Lonchodina n. sp. Philip, p. 446, pl. 3, fig. 20 (non figs. 19 and 24) [M element].
1969 Spathognathodus linearis (Philip); Flood, pl. 2, fig. 12 [Pa element].
1969 Ozarkodina typica australis Philip and Jackson; Flood, pl. 1, fig. 4 [Pb element].
1969 Lonchodina n. sp. Philip; Flood, pl. 1, fig. 8 [M element].
1969 Ligonodina salopia Rhodes; Flood, pl. 1, fig. 9 [Sc element].
1970 Spathognathodus linearis (Philip); Philip and Jackson in Pedder, Jackson and Philip, p. 217, pl. 38, figs. 16-21 [Pa element].
1970 Ligonodina salopia Rhodes; Philip and Jackson in Pedder, Jackson and Philip, p. 213, pl. 40, figs. 1, 3, 4 [Sc element].
1970 Lonchodina greilingi Walliser; Philip and Jackson in Pedder, Jackson and Philip, pl. 37, fig. 18 (non figs. 14 and 15) [M element].
1970 Lonchodina sp. B. Philip and Jackson in Pedder, Jackson and Philip, p. 213, pl. 37, fig. 27 [Sb element].
1970 Trichonodella inconstans Walliser; Philip and Jackson in Pedder, Jackson and Philip, p. 218, pl. 37, figs. 17, 19, 21 [Sa element].
1971 Spathognathodus linearis (Philip); Fähraeus, p. 679, pl. 77, fig. 39 [Pa element].

Amended diagnosis. Pa elements have a subrectangular blade, slightly convex anteriorly and concave posteriorly in lateral view. Denticles short and stubby; basal cavity with widely flaring sub-symmetrical lobes.

Material. Forty-three specimens of the Pa element from twenty-two localities; sixteen non-platform elements from thirteen localities (Tables 1-4).

Discussion. Philip (1966) recovered elements of O. linearis from the top of the Buchan Caves Limestone at Buchan (dehiscens Zone), but the present study has shown them to occur in small numbers high in the perbonus Zone, e.g. in bed 12.1 in the Gelantipy Road section (Table 1). The Pa element of O. linearis can be distinguished from the Pa element of O. druceana from Cobar, New South Wales (Pickett 1980) by being more rectangular in lateral view, rather than decreasing dramatically posteriorly. The basal cavity of O. eurekaensis from the Roberts Mountains, Nevada.

EXPLANATION OF PLATE 39

Figs. 1-16. Ozarkodina prolata sp. nov. Pa elements: 1-3, lateral, upper, and lower views of NMVP 99051, holotype, sample 8.8.10, × 60; 4, lateral view of NMVP 99052, sample BON 50-60, × 90; 5 and 6, lower and lateral views of NMVP 99053, sample 8.8.10, × 60; 7 and 8, lateral and lower views of NMVP 99054, sample Forrest Motel, × 90; 9 and 10, lateral and upper views of NMVP 99055, BON 65-70, × 90; 11, lateral view of NMVP 99056, sample BON 15-19.5, × 60. Pb element: 15, NMVP 99057, sample SB 40-60, × 90. M element: 14, NMVP 99058, sample SB 40-60, × 90. Sb element: 16, NMVP 99059, sample SB 40-60, × 90. Sc elements: 12, NMVP 99060, sample Taravale Fm. below SB 1, × 90; 13, NMVP 99061, sample SB 40-60, × 90.
is much narrower than that of *O. linearis* and does not expand rapidly to maximum width midway along the blade. The Pb, M, and symmetry transition elements of *O. linearis*, unlike those of *O. druceana*, are conventionally assigned to the genus *Ozarkodina*; those assigned to *O. druceana* by Pickett (1980) belong to a species of *Amydroidaxis*, possibly a morphotype of *A. johnsoni* Klapper and Murphy.

Ozarkodina prolata sp. nov.

Plate 39

1966 *Spathognathodus steinhornensis buchanensis* n. subsp. Philip, pp. 450–451, pl. 2, figs. 16–21, 24–28 (non figs. 1–15, 22, 23), text-fig. 8b, 8c [Pb element].

1971 *Spathognathodus optima* Moskalenko; Fähraeus, pp. 679–680, pl. 77, figs. 15–18, 23, 24, 31 (non figs. 19–21) [Pa element].

1976 *Ozarkodina remschheidensis* (Ziegler); Savage, p. 1182, pl. 1, figs. 1–12 (non figs. 13–15) [Pa, Pb, M, Sa, Sb, Sc elements].

1977 *Pandorinellina cf. P. optima* (Moskalenko); Savage et al., p. 2934, pl. 2, figs. 11–14 [Pa element].

Derivation of name. *prolata* (Lat.) = extended, elongated, in reference to the long, relatively narrow blade of the Pa element.

Holotype. NMV P99051 (Pl. 39, figs. 1–3) from the Taravale Formation, 51–2 m above the base of the Gelantipy Road section (sample 8.8.10) at Buchan, Victoria.

Diagnosis. Pa elements have a long, relatively narrow, straight or slightly curved blade with numerous, irregular, moderately small, triangular denticles increasing in size towards the anterior. Widely flaring, rounded lobes of basal cavity are situated medially, taper anteriorly, and continue posteriorly as a groove.

Material. 1,128 specimens of the Pa element from 104 localities; 460 non-platform elements from seventy-four localities (Tables 1–4).

Discussion. Klapper and Johnson (1980, p. 451) assigned this species to *Pandorinellina*, a genus that differs from *Ozarkodina* by the Sa element being 'diplorellan' rather than 'trichonellan' in form (Klapper in Ziegler 1975, p. 317). The *prolata* apparatus is placed in *Ozarkodina* on two grounds: there is no 'diplorellan' element that will 'fit' the reconstruction; and, from an evolutionary viewpoint, it seems that the *prolata* line belongs to the ozarkodinids (see below).

The Pa element of *O. prolata* was first illustrated from Buchan by Philip (1966) who assigned it to *Spathognathodus eosteinhornensis buchanensis*, a form recovered from samples of older strata in the Buchan Caves Limestone. The following features of *O. prolata* separate the two: the longer blade; the slightly smaller denticles and their more uniform size (except anteriorly where two or three are clearly larger and higher); and the more centrally situated basal cavity that tapers anteriorly. Although these features separate the two species, it is clear that *O. buchanensis* is the

Explanation of Plate 40

Figs. 1–17. *Pandorinellina exigua exigua* (Philip). Pa elements: 1 and 2, lateral and lower views of NMVP 99062, sample BON 13.5–15, × 60; 3 and 4, lateral and lower views of NMVP 99063, sample BON 50–60, × 60; 5 and 6, lateral and upper views of NMVP 99064, sample Ma 4, × 60; 7 and 8, lateral and lower views of NMVP 99065, sample BON 220–240, × 60. Pb elements: 9, NMVP 99066, sample SB 40–60, × 45; 10, NMVP 99067, sample OTRC 1, × 45; 11, NMVP 99068, sample OTRC 1, × 45. M element: 14, NMVP 99069, sample SLO 60, × 45. Sa elements: 12, NMVP 99070, sample Buchan Caves Ls. at The Basin, × 45; 13, NMVP 99071, sample Taravale Fm. below SB 1, × 45. Sb elements: 15, NMVP 99072, sample SLO 85, × 45; 17, NMVP 99074, sample SLO 250, × 45. Sc element: 16, NMVP 99073, sample Ma 10, × 45.
precursor of *O. prolata* and, in Australia at least, probably replaces the *remscheidensis* repetitor → *steinhornensis* miae transition of Bultynck (1971). The ranges so far established for the above (text-fig. 9) support this conclusion.

Specimens of *O. prolata* have been recovered from a section at La Grange, France (P. Bultynck, pers. comm.) where they occur in the same sample (A8/10) with *P. steinhorntensis* steinhorntensis. The Pa element of the older *P. optima* (Moskalenko) illustrated by Moskalenko (1966) has a much wider blade and a more anteriorly located basal cavity than *O. prolata*. An interesting study of the Pa element of *P. exigua midandenta* Wang and Ziegler has been made by Bai (1985). Forms referred to by Bai as ‘alpha’ and ‘beta’ morphotypes of *P. midandenta* may be synonymous with *O. buchannensis* and *O. prolata* respectively but, without information regarding the Sa element of the apparatuses, it is unwise to synonymize them.

Genus Pandorinellina Müller and Müller, 1957

Type species. Pandorinellina insita Staufler, 1940

Pandorinellina exigua exigua (Philip, 1966)

Plate 40

1966 *Spathognathodus exigua* n. sp. Philip, pp. 449-450, pl. 3, figs. 26-37, text-fig. 7 [Pa element].
1966 *Neoproniodas bicurvatua* (Branson and Mehl); Philip, p. 446, pl. 3, fig. 13 (non figs. 12, 14-16) [M element].
1966 *Spathognathodus frankenwaldensis* Bischoff and Sannemann; Clark and Ethington, pp. 685-686, pl. 82, figs. 15 and 21 [Pa element].
1970 *Spathognathodus steinhorntensis exigua* Philip; Philip and Jackson in Pedder, Jackson and Philip, pp. 217-218, pl. 38, figs. 7, 8, 10, 11, 13 [Pa element].
1971 *Spathognathodus optima* Moskalenko; Fähraeus, pp. 679-680, pl. 77, figs. 19 and 20 (non figs. 15-18, 21, 24, 31) [Pa element].
1971 *Spathognathodus exigua* Philip; Fähraeus, pp. 678-679, pl. 77, figs. 25-30, 32 [Pa element].
1972 *Spathognathodus n. sp. A*, Uyeno in McGregor and Uyeno, p. 13, 5, figs. 19-21, 30-32 [Pa element].
1972 *Ozarkodina n. sp. A*, Uyeno in McGregor and Uyeno, p. 13, 5, figs. 4 and 5 [Pb element].
1973 *Pandorinellina exigua exigua* (Philip); Klapper in Ziegler, p. 319, pl. 2, fig. 2 [Pa element].
1974 *Pandorinellina exigua exigua* (Philip); Klapper in Perry et al., pp. 1086-1087, pl. 6, figs. 12 and 13 [Pa element].
1975 *Spathognathodus exigua* Philip; Weyant, pl. 1, figs. 1-8 [Pa element].
1975 *Spathognathodus exigua* Philip; Telford, pp. 58 and 60, pl. 14, figs. 10-18 [Pa element].
1978 *Ozarkodina* sp. Pickett, p. 100, pl. 1, figs. 8-11 (non figs. 12-16, 26, 27) [Pa element].
1979 *Pandorinellina exigua* (Philip); Lane and Ormiston, pp. 58 and 59, pl. 6, figs. 15, 20, 24 (non figs. 25 and 26) [Pa element].

EXPLANATION OF PLATE 41

Figs. 1-4. *Belodella devonica* (Staufler). 1. NMVP 99091, sample Ma 7, × 60. 2. NMVP 99092, sample Ma 7, × 60. 3. NMVP 99093, sample OTRC top 1 m, × 60. 4. NMVP 99094, sample Ma 7, × 60.

Figs. 5-8. *B. retusa* (Philip). 5. NMVP 99095, sample Ma 7, × 60. 6. NMVP 99096, sample Ma 7, × 60. 7. NMVP 99097, sample Ma 8, × 60. 8. NMVP 99098, sample Ma 7, × 60.

Fig. 9. *B. triangularis* (Staufler). NMVP 99099, sample Ma 7, × 60.

Fig. 10. *Panderodites volgae* (Philip), NMVP 99100, sample Ma 7, × 60.

Fig. 11. *Deplanodas sp.*; NMVP 99101, sample Ma 7, × 60.

Figs. 14 and 15. *P. recurvatus* (Rhodes). 14. NMVP 99104, sample Ma 7, × 60. 15. NMVP 99105, sample Ma 7, × 300.
MAWSON, Belodelia, Panderodus, Drepanodus
1979 Ozarkodina denckmanni Ziegler; Lane and Ormiston, pl. 6, fig. 23 [Pb element].
1980 Pandorinella exigua exigua (Philipp); Uyeno and Klapper, pl. 8.1, figs. 25–27 [Pa element].

Material. 608 specimens of the Pa element from eighty-six localities; 281 non-platform elements from fifty-one localities (Tables 1–4).

Discussion. The Pa element of P. e. exigua first occurs at Buchan and Bindi together with Polygnathus dehiscens. Although Pandorinella exigua philipi does not accompany P. e. exigua in any of these samples, transitional forms between them are found low in the dehiscens Zone; these have a very narrowly expanded basal cavity posterior to the lobes, so narrow as to be almost a groove like that found in P. e. philipi. Similar transitional forms from high in the section at Royal Creek, Yukon Territory, have been illustrated by Klapper (1969, pl. 5, figs. 1–5). Towards the top of the section at Buchan, the basal cavity of specimens of P. e. exigua tends to taper more evenly, with less constriction at the posterior of the basal cavity lobes than in specimens recovered from lower levels. These forms appear to be transitional between P. e. exigua and P. expansa Uyeno and Mason, a form that shares with P. e. exigua a characteristic blade with a high anterior third somewhat offset from the remaining, gently arched two-thirds. Pickett (1978) discussed specimens he referred to ‘Ozarkodina’ sp. from the Mount Frome Limestone, New South Wales, recovered from beds below the first occurrence of P. expansa s. s. It appears from the shape of the basal cavity that the Pa elements figured by Pickett (1978, pl. 1, figs. 8–11) are similarly a form transitional between P. e. exigua and P. expansa, rather than juveniles of P. palethorpei. The Pb element of P. e. exigua has a short, narrow posterior blade (Pl. 40, fig. 10), a characteristic developed to an even greater degree in P. expansa; this further supports the phylogenetic relationship of the two. From the Ogilvie Formation, Northern Yukon, Perry et al. (1974) documented the presence of P. e. exigua in faunas containing P. perbonus, with P. expansa occurring higher in the sequence accompanied by P. serotinus.

Acknowledgements. This work owes much to encouragement and advice given by Professor John Talbot. His previous work in the area and involvement in activities of the IUGS Subcommission on Devonian Stratigraphy highlighted the potential significance of the project. He and other members of the IUGS Subcommission, especially Professors Gilbert Klapper and Willi Ziegler, commented on the manuscript and were generous with their wisdom. The figures and tables were drafted by Rod Bashford and Julie Browne.

REFERENCES

BRANDON, E. B. and MEHL, M. G. 1933. Conodont studies No. 1 Conodonts from the Harding Sandstone of Colorado; Bainbridge (Silurian) of Missouri; Jefferson City (Lower Ordovician) of Missouri. Univ. Mo. Stud. 8 (1), 5–72, 9 pls.
MAWSON: EARLY DEVONIAN CONODONTS

KLAPPER, G. 1969. Lower Devonian conodont sequences, Royal Creek, Yukon Territory, and Devon Island, Canada; with a section on Devon Island stratigraphy by A. R. Ormiston. J. Paleont. 43, 1-27, 6 plis.

SAVAGE, N. M. 1976. Lower Devonian (Gedinnian) conodonts from the Grouse Creek area, Klamath Mountains, northern California. J. Paleont. 50, 1180-1190, 3 pls.

--- 1965. The stratigraphic and diastrophic evolution of central and eastern Victoria in Middle Palaeozoic times. Ibid. 79, 179-195.

TEICHMÜLLER, C. 1948. Middle Devonian goniatites from the Buchan district, Victoria. J. Paleont. 22, 60-67, pl. 16.

MAWSON: EARLY DEVONIAN CONODONTS

Typescript received 2 January 1986
Revised typescript received 26 June 1986