Reconstructing the feeding ecology of fossil fishes can be difficult, but new mechanical approaches enable reasonably reliable inferences by comparison with living forms. Here, the feeding ecology of one of the most iconic and abundant actinopterygians of the Early Jurassic, Dapedium, is explored through detailed anatomical study and functional analyses of jaw mechanics. Mathematical models derived from modern teleost functional morphology are applied, to ascertain the transmission of force through the jaws of Dapedium. A number of features not previously identified in the genus are described, and the dentition is described in full for the first time. The analysis of the functional morphology of Dapedium, in combination with its jaw anatomy and dentition, indicates that the genus was well adapted to a durophagous feeding habit, although indirect evidence suggests a more generalist feeding mode. Being a generalist durophage may explain the success of the genus in the aftermath of the end-Triassic extinction event and its radiation in the Early Jurassic, as indicated by the ubiquity of Dapedium fossils throughout the Lower Lias.