Skip to content Skip to navigation

Article: What is macroevolution?

Palaeontology - Vol. 63 Part 1 - Cover Image
Publication: Palaeontology
Volume: 63
Part: 1
Publication Date: January 2020
Page(s): 1 11
Author(s): Michael Hautmann
Addition Information

How to Cite

HAUTMANN, M. 2020. . Palaeontology, 63, 1, 1-11. DOI: /doi/10.1111/pala.12465

Author Information

  • Michael Hautmann - Paläontologisches Institut und Museum Universität Zürich Karl‐Schmid Strasse 4 8006 Zürich Switzerland

Publication History

    Online Version Hosted By

    Wiley Online Library
    Get Article: Wiley Online Library [Pay-to-View Access] |

    Abstract

    Definitions of macroevolution fall into three categories: (1) evolution of taxa of supraspecific rank; (2) evolution on the grand time‐scale; and (3) evolution that is guided by sorting of interspecific variation (as opposed to sorting of intraspecific variation in microevolution). Here, it is argued that only definition 3 allows for a consistent separation of macroevolution and microevolution. Using this definition, speciation has both microevolutionary and macroevolutionary aspects: the process of morphological transformation is microevolutionary, but the variation among species that it produces is macroevolutionary, as is the rate at which speciation occurs. Selective agents may have differential effects on intraspecific and interspecific variation, with three possible situations: effect at one level only, effect at both levels with the same polarity but potentially different intensity, and effects that oppose between levels. Whereas the impact of all selective agents is direct in macroevolution, microevolution requires intraspecific competition as a mediator between selective agents and evolutionary responses. This mediating role of intraspecific competition occurs in the presence of sexual reproduction and has therefore no analogue at the macroevolutionary level where species are the evolutionary units. Competition between species manifests both on the microevolutionary and macroevolutionary level, but with different effects. In microevolution, interspecific competition spurs evolutionary divergence, whereas it is a potential driver of extinction at the macroevolutionary level. Recasting the Red Queen hypothesis in a macroevolutionary framework suggests that the effects of interspecific competition result in a positive correlation between origination and extinction rates, confirming empirical observations herein referred to as Stanley's rule.

    PalAss Go! URL: http://go.palass.org/kp6 | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+