Skeletal microstructure indicates chancelloriids and halkieriids are closely related

51 4 July 865 879 10.1111/j.1475-4983.2008.00792.x

PORTER, S. M. 2008. Skeletal microstructure indicates chancelloriids and halkieriids are closely related. Palaeontology51, 4, 865–879.

Susannah M. Porter Chancelloriids are problematic, sac-like animals whose sclerites are common in Cambrian fossil assemblages. They look like sponges, but were united with the slug-like halkieriids in the group Coeloscleritophora Bengtson and Missarzhevsky, 1981 based on a unique mode of sclerite construction. Because their body plans are so different, this proposal has never been well accepted, but detailed study of their sclerite microstructure presented here provides additional support for this grouping. Both taxa possess walls composed of a thin, probably organic, sheet overlying a single layer of aragonite fibres orientated parallel to the long axis of the sclerite. In all halkieriids and in the chancelloriid genus ArchiasterellaSdzuy, 1969, bundles of these fibres form inclined projections on the upper surface of the sclerite giving it a scaly appearance. On the lower surface of the sclerite, the projections are absent. This microstructure appears to be unique to chancelloriids, halkieriids, and their relatives, siphogonuchitids and sachitids. (The sclerites of another putative halkieriid relative, WiwaxiaWalcott, 1911, are unmineralized, making direct comparisons impossible.) Thus, similarity both at the level of sclerite construction and the level of sclerite microstructure suggests that chancelloriid, halkieriid, sachitid, and siphogonuchitid sclerites are homologous. The difference in chancelloriid and halkieriid body plans can be resolved in two ways. Chancelloriids either represent a derived condition exhibiting complete loss of bilaterian characters or they represent the ancestral condition from which the bilaterally symmetric halkieriids, and the Bilateria as a whole, derived. The latter interpretation, proposed by Bengtson (2005), implies that coeloscleritophoran sclerites ('coelosclerites') are a plesiomorphy of the Bilateria, lost or transformed in descendent lineages. Given that mineralized coelosclerites appear in the fossil record no earlier than c. 542 Ma, this in turn implies either that the Ediacaran record of bilaterians has been misinterpreted or that coelosclerite preservability increased at the beginning of the Cambrian Period. The former is difficult to reconcile with Ediacaran trace and body fossil evidence, but the latter may be possible, reflecting either independent mineralization of organic-walled sclerites in chancelloriids and halkieriids or the opening of a taphonomic window that favours coelosclerite preservation. KEYWORDS chancelloriids • halkieriids • biomineralization • microstructure • sclerites • Coeloscleritophora
  • BENGTSON, S. 1992. The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia, 25, 401–420.
  • BENGTSON, S. 2005. Mineralized skeletons and early animal evolution. 101–124. In BRIGGS, D. E. G. (ed.). Evolving form and function: fossils and development. Special Publication of the Peabody Museum of Natural History, Yale University, New Haven, CT, 288 pp.
  • BENGTSON, S. and CONWAY MORRIS, S. 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17, 307–329.
  • BENGTSON, S. and CONWAY MORRIS, S. 1992. Early radiation of biomineralizing phyla. 448–481. In LIPPS, J. and SIGNOR, P. (eds). Origin and early evolution of the Metazoa. Plenum Press, New York, NY, 578 pp.
  • BENGTSON, S. and HOU XIANGUANG 2001. The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46, 1–22.
  • BENGTSON, S. and MISSARZHEVSKY, V. V. 1981. Coeloscleritophora – a major group of enigmatic Cambrian metazoans. 19–21. In TAYLOR, M. E. (ed.). Short papers for the Second International Symposium on the Cambrian System. United States Department of the Interior, Geological Survey, Open-File Report 81-743, 252 pp.
  • BENGTSON, S., MISSARZHEVSKY, V. V., COOPER, B. J., JELL, P. A. and RUNNEGAR, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australian Palaeontologists, 9, 364 pp.
  • BENTON, M. J. and DONOGHUE, P. C. J. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24, 26–53.
  • BUDD, G. E. and JENSEN, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75, 254–295.
  • BUTTERFIELD, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology, 16, 287–303.
  • BUTTERFIELD, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369, 477–479.
  • BUTTERFIELD, N. J. 2006. Hooking some stem-group “worms”: fossil lophotrochozoans in the Burgess Shale. BioEssays, 28, 1161–1166.
  • BUTTERFIELD, N. J. and NICHOLAS, C. J. 1996. Burgess Shale-type preservation of both mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70, 893–899.
  • CARON, J.-B., SCHELTEMA, A., SCHANDER, C. and RUDKIN, D. 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442, 159–163.
  • CONWAY MORRIS, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London, Series B, 307, 507–582.
  • CONWAY MORRIS, S. and CARON, J.-B. 2007. Halwaxiids and the early evolution of the lophotrochozoans. Science, 315, 1255–1258.
  • CONWAY MORRIS, S. and CHAPMAN, A. J. 1996. Lower Cambrian coeloscleritophorans (Ninella, Siphogonuchites) from Xinjiang and Shaanxi, China. Geological Magazine, 133, 33–51.
  • CONWAY MORRIS, S. and CHAPMAN, A. J. 1997. Lower Cambrian halkieriids and other coeloscleritophorans from Aksu-Wushi, Xinjiang, China. Journal of Paleontology, 71, 6–22.
  • CONWAY MORRIS, S. and CHEN MENGE 1989. Lower Cambrian anabaritids from south China. Geological Magazine, 126, 615–632.
  • CONWAY MORRIS, S. and CHEN, MENGE 1991. Cambroclaves and paracarinachitids, early skeletal problematica from the Lower Cambrian of China. Palaeontology, 34, 357–397.
  • CONWAY MORRIS, S. and PEEL, J. S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London, Series B, 347, 305–358.
  • DORÉ, F. and REID, R. E. H. 1965. Allonnia tripodophora nov. gen., nov. sp., nouvelle éponge du Cambrien inférieur de Carteret (Manche). Comptes Rendus Sommaires des Séances, Société Géologique de la France, 1965, 20–21.
  • DROSER, M. L., GEHLING, J. G. and JENSEN, S. R. 2005. Ediacaran trace fossils: true and false. 125–138. In BRIGGS, D. E. G. (ed.). Evolving form and function: fossils and development. Special Publication of the Peabody Museum of Natural History, Yale University, New Haven, CT, 288 pp.
  • DZIK, J. 1994. Evolution of ‘small shelly fossils’ assemblages of the Early Paleozoic. Acta Palaeontologica Polonica, 39, 247–313.
  • FEDONKIN, M. A. and WAGGONER, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388, 868–871.
  • FENG WEIMIN, MU XINAN and KOUCHINSKY, A. V. 2001. Hyolith-type microstructure in a mollusc-like fossil from the Early Cambrian of Yunnan, China. Lethaia, 34, 303–308.
  • FENG WEIMIN, MU XINAN, SUN WEIGUO and QIAN YI 2002. Microstructure of Early Cambrian Ramenta from China. Alcheringa, 26, 9–17.
  • FENG WEIMIN and SUN WEIGUO 2003. Phosphate replicated and replaced microstructure of molluscan shells from the earliest Cambrian of China. Acta Palaeontologica Polonica, 48, 21–30.
  • FERNÁNDEZ REMOLAR, D. C. 2001. Chancelloridae del Ovetiense Inferior de la Sierra de Córdoba, España. Revista Española de Paleontología, 16, 39–61.
  • HICKMAN, C. S. 2004. The problem of similarity: analysis of repeated patterns of microstructure on gastropod larval shells. Invertebrate Biology, 123, 198–211.
  • HUA HONG, CHEN ZHE, YUAN XUNLAI, ZHANG LUYI and XIAO SHUHAI 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33, 277–280.
  • HUA HONG, PRATT, B. R. and ZHANG LUYI 2003. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18, 454–459.
  • JAMES, N. P. and KLAPPA, C. F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53, 1051–1096.
  • JANUSSEN, D., STEINER, M. and ZHU MAOYAN 2002. New well-preserved scleritomes of Chancelloriidae from the Early Cambrian Yuanshan Formation (Chengjiang, China) and the Middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications. Journal of Paleontology, 76, 596–606.
  • JELL, P. A. 1981. Thambetolepis delicata gen. et sp. nov., an enigmatic fossil from the Early Cambrian of South Australia. Alcheringa, 5, 85–93.
  • JENSEN, S. 2003. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems, and perspectives. Integrative and Comparative Biology, 43, 219–228.
  • KINGSLEY, R. J. 1984. Spicule formation in the invertebrates with special reference to the gorgonian Leptogorgia virgulata. American Zoologist, 24, 883–891.
  • KOUCHINSKY, A. V. 1999. Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia. Lethaia, 32, 173–180.
  • KOUCHINSKY, A. V. 2000a. Shell microstructures in Early Cambrian molluscs. Acta Palaeontologica Polonica, 45, 119–150.
  • KOUCHINSKY, A. V. 2000b. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa, 24, 65–81.
  • KOUCHINSKY, A. V. and BENGTSON, S. 2002. The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47, 431–444.
  • LOWENSTAM, H. A. 1989. Spicular morphology and mineralogy in some Pyuridae (Ascidiacea). Bulletin of Marine Science, 45, 243–252.
  • LOWENSTAM, H. A. and WEINER, S. 1989. On biomineralization. Oxford University Press, New York, NY, 324 pp.
  • LUO HUILIN, JIANG ZHIWEN, WU XICHE, SONG XUELIANG and OUYANG LIN 1982. The Sinian-Cambrian boundary in eastern Yunnan, China. People’s Publishing House, Yunnan, 265 pp. [In Chinese, English summary].
  • MALOOF, A. C., SCHRAG, D. P., CROWLEY, J. L. and BOWRING, S. A. 2005. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas margin, Morocco. Canadian Journal of Earth Sciences, 42, 2195–2216.
  • MATTHEW, G. F. 1899. Studies on Cambrian faunas. 3. Upper Cambrian fauna of Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society of Canada, 5, 39–66.
  • MEHL, D. 1996. Organization and microstructure of the chancelloriid skeleton: implications for the biomineralization of the Chancelloriidae. Bulletin de l’Institut Océanographique, Monaco, 14, 377–385.
  • MEHL, D. 1998. Porifera and Chancelloriidae from the Middle Cambrian of the Georgina Basin, Australia. Palaeontology, 41, 1153–1182.
  • MESHKOVA, N. P. 1969. To the question of the palaeontological characteristics of the Lower Cambrian sediments of the Siberian Platform. 158–174. In ZHURAVLEVA, I. (ed.). Biostratigraphy and palaeontology of the Lower Cambrian of Siberia and the Far East. Nauka, Moscow, 227 pp. [In Russian].
  • NARBONNE, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33, 421–442.
  • PETERSON, K. J., LYONS, J. B., NOWAK, K. S., TAKACS, C. M., WARGO, M. J. and McPEEK, M. A. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences, USA, 101, 6536–6541.
  • PORTER, S. M. 2004a. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. Palaios, 19, 178–183.
  • PORTER, S. M. 2004b. Halkieriids in Middle Cambrian phosphatic limestones from Australia. Journal of Paleontology, 78, 574–590.
  • QIAN JIANXIN and XIAO BING 1984. An early Cambrian small shelly fauna from Aksu-Wushi region, Xinjiang. Professional Papers of Stratigraphy and Paleontology, 13, 65–90 [In Chinese, English summary].
  • QIAN YI 1977. Hyolitha and some problematica from the Lower Cambrian Meishuchunian Stage in central and SW China. Acta Palaeontologica Sinica, 16, 256–275 [In Chinese, English summary].
  • QIAN YI and BENGTSON, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24, 1–156.
  • RANDELL, R. D., LIEBERMAN, B. S., HASIOTIS, S. T. and POPE, M. C. 2005. New chancelloriids from the Early Cambrian Sekwi Formation with a comment on chancelloriid affinities. Journal of Paleontology, 79, 987–996.
  • RUNNEGAR, B. 1985. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa, 9, 245–257.
  • SDZUY, K. 1969. Unter- und mittelkambrische Porifera (Chancelloriida und Hexactinellida). Palontologische Zeitschrift, 43, 115–147.
  • THOMAS, R. D. K., SHEARMAN, R. M. and STEWART, G. W. 2000. Evolutionary exploitation of design options by the first animals with hard skeletons. Science, 288, 1239–1242.
  • VORONIN, Y. I., VORONOVA, L. G., GRIGOR’EVA, N. V., DROZDOVA, N. A., ZHEGALLO, E. A., ZHURAVLEV, A. Y., RAGOZINA, A. L., ROZANOV, A. Y., SAYUTINA, T. A., SYSOEV, V. A. and FONIN, V. D. 1982. The Precambrian-Cambrian boundary in the geosynclinal regions (reference section Salany-Gol, MNR). Trudy Sovmestnoy Sovetsko-Mongol’skoy Paleontologicheskoy Ekspeditsii, 18, 1–150.
  • WALCOTT, C. D. 1911. Cambrian geology and paleontology II. No. 5. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57, 109–145.
  • WALCOTT, C. D. 1920. Cambrian geology and paleontology IV. No. 6. Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67, 261–364.
  • WRONA, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49, 13–56.
Wiley Online Library