Flow pattern around the rigid cephalic shield of the Devonian agnathan Errivaspis waynensis (Pteraspidiformes: Heterostraci)

51 5 September 1141 1150 10.1111/j.1475-4983.2008.00801.x

BOTELLA, H., FARIÑA, R. A. 2008. Flow pattern around the rigid cephalic shield of the Devonian agnathan Errivaspis waynensis (Pteraspidiformes: Heterostraci). Palaeontology51, 5, 1141–1150.

Héctor Botella and Richard A. Fariña Palaeozoic armoured agnathans (or ostracoderms) are characterised by having an external, bone shield enclosing the anterior part of their bodies, which demonstrate great diversity of both forms and sizes. The functional significance of these cephalic shields remains unclear (they may have been a functional analogue of the vertebral column, or merely afforded protection). Here we assess the importance of the cephalic shield in terms of locomotion. In order to do this, we have studied flow patterns of the Devonian heterostracan Errivaspis waynensis (White, 1935), using an anatomically correct model of E. waynensis positioned at different pitching angles. The fluid flow was visualised in a wind tunnel, using planar light sheet techniques, adding vaporised propylene glycol to the fluid. The flow pattern over the cephalic shield of Errivaspis is dominated by the formation of leading-edge vortices (LEVs). When the model was positioned at angles of attack of -2 degrees or higher a pair of nearly symmetrical, counter-rotating primary vortices were produced, which flowed downstream over the upper surface of the cephalic shield. At moderate angles of attack, LEVs remained attached to the dorsal surface, but, as the angle of attack increased above 7 degrees, vortices began to separate from the surface at posterior locations. At a high angles of attack (around 12 degrees or 13 degrees), vortex breakdown (or vortex burst) occured. The body-induced vortical flow around the cephalic shield is very similar to the that described over delta wing aircraft. This strategy generates lift forces through vortex generation (vortex lift). Based on this analogue and knowing that Errivaspis lacked pectoral fins or any other obvious control surfaces, vortex lift forces added through this mechanism may have played a major role in the locomotion of these primitive fishes, not only to counteract the negative buoyancy of the fish, but also as a means of manoeuvring. KEYWORDS Pteraspidids • Errivaspis waynensis • locomotion • vortex • hydrodynamics • leading edge vortices • smoke flow visualisation
  • AGASSIZ, L. 1835. Recherches sur les Poissons Fossiles, vol. 2. – i. 85–200. Neuchâtel (Petitpierre & Soleure).
  • ALEYEV, YU. G. 1976. Nekton. Naukova Dumka, Kiev, 392 pp. [in Russian].
  • ALEYEV, Y. U. G. and NOVITSKAYA, L. I. 1983. Experimental study of hydrodynamic qualities of Devonian heterostracans. Palaeontological Journal, 1, 3–12 [in Russian].
  • ANDERSON, J. D. Jr. 1991. Fundamentals of Aerodynamics, second edition. Mc Graw-Hill, New York, 800 pp.
  • BARTOL, I. K., GHARIB, M., WEBB, P. W., WEIHS, D. and GORDON, M. S. 2005. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes. Journal of Experimental Biology, 208, 327–344.
  • BARTOL, I. K., GHARIB, M., WEIHS, D., WEBB, P. W., HOVE, J. R. and GORDON, M. S. 2003. Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae). Journal of Experimental Biology, 206, 725–744.
  • BARTOL, I. K., GORDON, M. S., GHARIB, M., HOVE, J., WEBB, P. W. and WEIHS, D. 2002. Flow patterns around the carapaces of rigid-bodied, multi-propulsor boxfishes (Teleostei: Ostraciidae). Integrative and Comparative Biology, 42, 971–980.
  • BELLES-ISLES, M. 1987. Le nage et l’hydrodynamique de deux Agnathes du Paléozoïque Alaspis macrotuberculata et Pteraspis rostrata. Neues Jahrbuch für Geologie und Paleontologie, Abhandlungen, 175, 347–376.
  • BERTIN, J. J. and SMITH, M. L. 1989. Aerodynamics for Engineers, second edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 576 pp.
  • BLIECK, A. 1984. Les Héterostracés Pteraspidiformes, Agnathes du Silurien-Dévonien du Continent Nord-Atlantique et des blocs avoisinants: Révision systématique, phylogénie, biostratigraphie, biogéographie. Cahiers de Paléontologie (Section Vertebrés). Éditions du Centre National de la Recherche Scientifique, Paris, 202 pp.
  • BOTELLA, H. and FARIÑA, R. 2004. Hidrodinámica y estrategia natatoria en Agnatos Pteraspidiformes. 35–37. In CALONGE, A., GOZALO, R., LÓPEZ, M. D. and PARDO, M. V. (eds). XX Jornadas de la Sociedad Española de Paleontología. Universidad de Alcala de Henares, 207 pp.
  • BUNKER, S. and MACHIN, K. E. 1991. The hydrodynamics of cephalaspids. 113–129. In RAYNER, J. M. V. and WOOTTON, R. J. (eds). Biomechanics in evolution. Cambridge University Press, Cambridge, 273 pp.
  • ERICKSON, G. E. 1980. Flow studies of slender wing vortices. American Institute of Aeronautics and Astronautics Paper 80–1423.
  • GU, W., ROBINSON, O. and ROCKWELL, D. 1993. Control of vortices on a delta wing by leading-edge injection. American Institute of Aeronautics and Astronautics Journal, 31 (7), 1177–1186.
  • GURSUL, I. 2005. Review of unsteady vortex flows over slender delta wings. Journal of Aircraft, 42, 299–319.
  • GURSUL, I., WANG, Z. and VARDAKI, E. 2006. Review of flow control mechanisms of leading-edge vortices. American Institute of Aeronautics and Astronautics Paper 2006–3508.
  • HUANG, A., FOLK, C., SILVA, C., CHRISTENSEN, B., CHEN, Y. and HO, C. M. 2001. Application of MEMS device to delta wing aircraft: from concept development to transonic flight test. American Institute of Aeronautics and Astronautics Paper 2001–0124.
  • JANVIER, P. 1996. Early vertebrates. Oxford Monographs on Geology and Geophysics 33. Oxford University Press, Oxford, xiii + 393 pp.
  • KERMACK, K. A. 1943. The functional significance of the hypocercal tail in Pteraspis rostrata. Journal of Experimental Biology, 20, 23–27.
  • LEE, M. and HO, C.-M. 1990. Lift force of delta wings. Applied Mechanics Review, 43, 209–221.
  • LUCCA-NEGRO, O. and O’DOHERTY, T. 2001. Vortex breakdown: a review. Progress in Energy and Combustion Science, 27 (4), 431–481.
  • MALCOLM, G. N. and NELSON, R. C. 1987. Comparison of water and wind tunnel flow visualization results on a generic fighter configuration at high angles of attack. American Institute of Aeronautics and Astronautics Paper 87–2423.
  • MARK-KURIK, E. 1992. Functional aspects of the armour in the early vertebrates. 107–116. In MARK-KURIK, E. (ed.). Fossil fishes as living animals. Academia 1, Tallinn, 299 pp.
  • MITCHELL, A. M. and DELERY, J. 2001. Research into vortex breakdown control. Progress in Aerospace Sciences, 37, 385–418.
  • POLHAMUS, E. C. 1966. A concept of the vortex lift of sharp edge delta wings based on a leading edge suction analogy. NASA TND, 3767, 1–5.
  • RAO, D. M. 1986. Towards an advanced vortex flap system: the ‘Cavity’ Flap’. Vortex Flow Aerodynamics. NASA CP, 2416, 219–230.
  • SUÁREZ, C. J. and MALCOLM, G. N. 1994. Water tunnel force and moment measurements on an F/A-18. In AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics 94-1802-CP, 12–24.
  • TORMALM, M. 1995. Numerical investigation of vortex breakdown over a 70 degree delta wing using an euler code. SAAB Aircraft Research and Development, Technical Report L-0-1R158.
  • WENTZ, W. H. and KOHLMAN, D. L. 1968. Wind tunnel investigations of vortex breakdown on slender sharp-edged wings. University of Kansas Center for Research, Technical Report FRL 68-013.
  • WERLÉ, H. 1954. Quelques resultats expérimentaux sur les ailes en flèche, aux faibles vitesses, obtenues en tunnel hydrodynamique”. La Recherche Aéronautique, 41, 15–21.
  • WHITE, E. I. 1935. The Ostracoderm Pteraspis Kner and the relationships of the agnathous vertebrates. Philosophical Transactions of the Royal Society of London B, 225, 381–457.
  • WOLFFELT, K. W. 1986. Investigation on the movement of vortex burst position with dynamically chanching angles of attack for a schematic delta-wing in a water tunnel with correlation to similar studies in windtunnel. Technical Report AGARD CP-413.
  • WOOD, N. J. and ROBERTS, L. 1988. Control of vortical lift on delta wings by tangential leading-edge blowing. Journal of Aircraft, 25 (3), 236–243.
Wiley Online Library