Article: Palaeoenvironmental implications of the ichnology and geochemistry of the Westbury Formation (Rhaetian), Westbury-on-Severn, south-west England
Publication: Palaeontology
Volume:
53
Part:
3
Publication Date:
May
2010
Page(s):
491
–
506
Author(s):
Lu Allington-Jones, Simon J. Braddy and Clive N. Trueman
Abstract
The Westbury Formation (Rhaetian) beds of Westbury Garden Cliff, Westbury-on-Severn, west of Gloucester, Britain, show an unusual combination of features. Both deep water and emergent characteristics are present within the sediments and the trace fossils. The ichnoassemblage consists of abundant Selenichnites, Planolites beverlyensis and Lockeia with rarer Oniscoidichnus, Chondrites, Rhizocorallium irregulare, Taenidium serpentium, an unusual form of Walcottia and Merostomichnites-like traces. These trace fossils display an interesting relationship with the sediments: low-energy Cruziana ichnofacies is found within high-energy sandstones. The sandstones are interbedded with laminated mudstones, apparently deposited in deep water, but some aspects of the ichnoassemblage, preservation and sedimentation indicate shallower water. One new trace fossil, Radichnus allingtona igen. et isp. nov., closely resembles the traces of modern fiddler crabs and imply emergence, by analogy. This ichnofauna is similar to early stage disaster colonisation in recent experiments in Long Island Sound (south of Connecticut, USA) and with storm-influenced deposits within the Cardium Formation (Seebe, Alberta, Canada). This indicates a lagoonal environment with influxes of sand and oxygen. Total organic carbon levels were found to fluctuate greatly between stratigraphic layers but remained relatively high. This implies low oxygen conditions. The abundance of sulphur (in pyrite) also supports an interpretation of anoxic conditions, and low sedimentation rates within the shale layers. A restricted shallow basin or lagoonal environment is proposed for the palaeoenvironment, with fluctuating oxygen influencing diversity.