Thoracic structure and enrolment style in middle Cambrian Eccaparadoxides pradoanus presages caudalization of the derived trilobite trunk

56 3 May 589 601 10.1111/pala.12004

ESTEVE, J., HUGHES, N. C., ZAMORA, S. 2013. Thoracic structure and enrolment style in middle Cambrian Eccaparadoxides pradoanus presages caudalization of the derived trilobite trunk. Palaeontology56, 3, 589–601.

Jorge Esteve, Nigel C. Hughes and Samuel Zamora The ability to enrol effectively evolved several times among trilobites. Here, we show that, unlike most redlichiid trilobites that could not enrol, both morphotypes of Eccaparadoxides pradoanus from the middle Cambrian of Spain enrolled so as to enclose most of the ventral surface beneath the exoskeleton and possessed specialized articulating devices that facilitated this behaviour. The holaspid thorax of all E. pradoanus was divided into two principal regions. The boundary between these marked a transition from anterior segments with short pleural spines, fulcra and ridge-and-groove inner pleural regions to posterior segments with longer, acuminate pleural spines that lack fulcra and inner pleural regions. Devices that aid articulation, such as fulcra with short articulating pleural surfaces, the petaloid articulating facet and long articulating half rings, are concentrated in the anterior region. These features, and the large number of specimens preserved in various degrees of enrolment, suggest an enrolment procedure in which the rear part of the trunk, containing both the posterior thorax and the pygidium, rotated as a single unit without significant internal flexure. As these posterior trunk articulations were apparently not required to permit enrolment, concentrating flexure in the anterior may have presaged the caudalized condition seen in many derived trilobite groups that encapsulated, in which a larger proportion of the trunk segments were allocated to the mature pygidium, and therefore unable to articulate.
  • ÁLVARO, J. J. and VIZCAÏNO, D.1998. Revision biostratigraphique du Cambrien moyen du versant méridional de la Montagne Noire (Languedoc, France). Bulletin de la Société Géologique de France, 169, 233–242.
  • BABCOCK, L. E. and SPEYER, S. E.1987. Enrolled trilobites from the Alden Pyrite Bed, Ledyard Shale (Middle Devonian) of western New York. Journal of Paleontology, 61, 539–548.
  • BERGSTRÖM, J.1973. Organization, life, and systematics of trilobites. Fossils and Strata, 2, 1–69.
  • BERGSTRÖM, J. and LEVI-SETTI, R.1978. Phenotypic variation in the Middle Cambrian trilobite Paradoxides davidis Salter at Manuels, S.E. Newfoundland: Geologica et Palaeontologica, 12, 1–40.
  • BRUTON, D. L. and HAAS, W.1997. Functional morphology of Phacopinae (Trilobita) and the mechanics of enrollment. Palaeontographica Abteilung A, 245, 1–43.
  • BRUTON, D. L. and HAAS, W.1999. The anatomy and functional morphology of Phacops (Trilobita) from the Hunsrück Slate (Devonian). Palaeontographica Abteilung A, 253, 1–75.
  • CHATTERTON, B. D. E. and CAMPBELL, M.1993. Enrolling in trilobites: a review and some new characters. Memoirs of the Association of Australasian Palaeontologists, 15, 103–123.
  • CLARKSON, E. N. K. and HENRY, J. L.1973. Structures coaptatives et enroulement chez quelques Trilobites ordoviciens et siluriens. Lethaia, 6, 105–132.
  • CLARKSON, E. N. K. and WHITTINGTON, H. B.1997. Enrollment and coaptative structures. 67–74. InTreatise on invertebrate paleontology, part O, Arthropoda 1. Trilobita, revised. Geological Society of America, Denver, Colorado and University of Kansas Press, Kansas, 530 pp.
  • DARWIN, C. R.1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. First edition. John Murray, London, 495 pp.
  • ESTEVE, J.2009. Enrollamiento en Conocoryphe heberti Munier-Chalmas & Bergeron, 1889 (Cámbrico medio, Cadenas Ibéricas, NE España) y estructuras coaptativas en la familia Conocoryphidae. Estudios Geológicos, 65, 167–182.
  • ESTEVE, J. in press. Intraspecific variability in paradoxidid trilobites from the Purujosa trilobite assemblage (middle Cambrian, northeast Spain). Acta Palaeontologica Polonica, http://dx.doi.org/10.4202/app.2012.0006 .
  • ESTEVE, J., ZAMORA, S., GOZALO, R. and LIÑÁN, E.2010. Sphaeroidal enrollment in middle Cambrian solenopleuropsine trilobites. Lethaia, 43, 478–493.
  • ESTEVE, J., HUGHES, N. C. and ZAMORA, S.2011. The Purujosa trilobite assemblage and the evolution of trilobite enrollment. Geology, 39, 575–578.
  • ESTEVE, J., SUNDBERG, F., ZAMORA, S. and GOZALO, R.2012. A new Alokistocaridae Resser, 1939 (Trilobita) from the middle Cambrian of Spain. Geobios, 45, 275–283.
  • FORTEY, R. A.1986. The type species of the Ordovician trilobite Symphysurus: systematics, functional morphology and terrace ridges. Palontologische Zeitschrift, 60, 255–275.
  • FORTEY, R. A.2001. Trilobite systematics: the last 75 years. Journal of Paleontology, 75, 1141–1151.
  • HARRINGTON, H.1959. General description of Trilobita. 38–117. InMOORE, R. C. (ed.). Treatise on invertebrate paleontology, Vol. O. (Arthropoda 1). Geological Society of America, Denver, Colorado and University of Kansas Press, Kansas, 579 pp.
  • HUGHES, N. C.1993. Distribution, taphonomy and functional morphology of the Upper Cambrian trilobite Dikelocephalus. Milwaukee Public Museum Contributions in Biology and Geology, 84, 1–49.
  • HUGHES, N. C.2003. Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology, 43, 185–206.
  • HUGHES, N. C.2007. The evolution of trilobite body patterning. Annual Review of Earth and Planetary Sciences, 35, 401–434.
  • JELL, P. A.2003. Phylogeny of early Cambrian trilobites. Special Papers in Palaeontology, 70, 45–57.
  • LEROSEY-AUBRIL, R. and ANGIOLONI, L.2009. Permian trilobites from Antalya Province, Turkey and enrollment in Late Palaeozoic trilobites. Turkish Journal of Earth Science, 18, 427–448.
  • ÖPIK, A. A.1970. Redlichia of Ordian (Cambrian) of Northern Australia and South Walles. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 144, 1–67.
  • ÖPIK, A. A.1975. Templetonian and Ordian xystridurid trilobites of Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 121, 1–84.
  • PRADO, M. C., VERNEUIL, E. and BARRANDE, J.1860. Sur l’existence de la faune primordial dans la Chaîne Cantabrique. Bulletin de la Société Géologique de France, Series 2, XVII, 516–542.
  • RAYMOND, P. E.1920. The appendages, anatomy, and relationships of trilobites. Memoirs of the Connecticut Academy of Sciences, 7, 1–169.
  • SIMPSON, G. G.1984. Tempo and mode in evolution. Columbia University Press, New York, 237 pp.
  • SPEYER, S. E.1988. Biostratinomy and functional morphology of enrollment in two Middle Devonian trilobites. Lethaia, 21, 121–138.
  • WHITTINGTON, H. B.1990. Articulation and exuviation in Cambrian trilobites. Philosophical Transactions of the Royal Society of London, Series B, 329, 27–49.
  • WHITTINGTON, H. B.1992. Trilobites. The Boydell Press, Woodbridge, 145 pp.
  • ZAMORA, S. and SMITH, A. B.2010. The oldest isorophid edrioasteroid (Echinodermata) and the evolution of attachment strategies in Cambrian edrioasteroids. Acta Palaeontologica Polonica, 55, 487–494.
  • ZAMORA, S. and SMITH, A. B.2012. Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society B, 279, 293–298.
Wiley Online Library