Skip to content Skip to navigation

Article: Cladal Turnover: the end-Ordovician as a large-scale analogue of species turnover

Publication: Palaeontology
Volume: 56
Part: 6
Publication Date: November 2013
Page(s): 1285 1296
Author(s): Curtis R. Congreve
Addition Information

How to Cite

CONGREVE, C. R. 2013. Cladal Turnover: the end-Ordovician as a large-scale analogue of species turnover. Palaeontology56, 6, 1285–1296.

Online Version Hosted By

Wiley Online Library
Get Article: Wiley Online Library [Pay-to-View Access] |

References

  • Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208 (4448), 1095–1108.
  • Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D. and Mitchell, C. E. 2012. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 109 (no. 9), 3428–3433.
  • Bergström, J. 1968. Upper Ordovician brachiopods from Vstergötland, Sweden. Geologica et Palaeontologica, 2, 1–35.
  • Berry, W. B. N. and Boucot, A. J. 1973. Glacio-eustatic control of the Late Ordovician–Early Silurian platform sedimentation and faunal changes. Geological Society of America Bulletin, 84, 275–284.
  • Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R. and Long, D. G. F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22, 295–298.
  • Briggs, D. E. G., Fortey, R. A. and Clarkson, E. N. K. 1988. Extinction and the fossil record of the arthropods. 171–209. In Larwood, G. P. (ed.). Extinction and survival in the fossil record. Clarendon Press, Oxford. 376 pp.
  • Cherns, L. and Wheeley, J. R. 2007. A pre-Hirnantian (Late Ordovician) interval of global cooling – the Boda event re-assessed. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 449–460.
  • Congreve, C. R. and Lieberman, B. S. 2008. Phylogenetic and biogeographic analysis of Ordovician homalonotid trilobites. Bentham Open; The Open Paleontology Journal, 1, 24–32.
  • Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Trípati, A. K. and Fischer, W. W. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 331, 903–906.
  • Fortey, R. A. 1989. There are extinctions and extinctions: examples from the lower Palaeozoic. Philosophical Transactions of the Royal Society of London, Series B, 325, 327–355.
  • Grant, P. R. and Grant, B. R. 2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science, 296, 707–711.
  • Hallam, A. and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, New York. 328 pp.
  • Harrington, H. J., Henningsmoen, G., Howell, B. F., Jaanusson, V., Lochman-Balk, L., Moore, R. C., Poulsen, C., Raestti, F., Richter, E., Richter, R., Schmidt, H., Sdzuy, K., Struve, W., Størmer, L., Stubblefield, C. J., Tripp, R., Weller, J. M. and Whittington, H. B. 1959. Treatise on invertebrate paleontology Part O: Arthropoda 1. University of Kansas Press, Lawrence, Kansas, 457 pp.
  • Havlicek, V. 1971. Brachiopodes de l'Ordovicien du Maroc. Notes et Memoires du Service Geologique, 230, 1–135.
  • Hermann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D. and Slingerland, R. L. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 385–401.
  • Ivany, L. C., Patterson, W. P. and Lohmann, K. C. 2000. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature, 407, 887–890.
  • Lespérance, P. J. 1974. The Hirnantian fauna of the Perce area (Quebec) and the Ordovician–Silurian boundary. American Journal of Science, 274, 10–30.
  • Lespérance, P. J. 1988. Trilobites. Bulletin of the British Museum of Natural History Geology, 43, 359–376.
  • Lieberman, B. S. 1994. Evolution of the trilobite subfamily Proetinae and the origin, evolutionary affinity, and extinction of the Middle Devonian proetid fauna of Eastern North America. Bulletin of the American Museum of Natural History, 223, 1–176.
  • Lieberman, B. S. 1999. Turnover pulse in trilobites during the Acadian Orogeny. 99–108. Proceedings of the Appalachian Biogeography Symposium. Virginia Museum of Natural History Special Publication, 7, 258 pp.
  • Lieberman, B. S. and Kloc, G. 1997. Evolutionary and biogeographic patterns in the Asteropyginae (Trilobita, Devonian). Bulletin of the American Museum of Natural History, 232, 1–127.
  • Lieberman, B. S. and Melott, A. L. 2007. Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS ONE, 2 (8), 1–9.
  • Lieberman, B. S. and Melott, A. L. 2012. Whilst this planet goes cycling on: what role for periodic astronomical phenomena in large scale patterns in the history of life? 37–50. In Talent, J. (ed.). Earth and life: global biodiversity, extinction intervals, and biogeographic perturbations through time. Springer, Berlin, 1107 pp.
  • Melott, A. L., Lieberman, B. S., Laird, C. M., Martin, L. D., Medvedev, M. V., Thomas, B. C., Cannizzo, J. K., Gehrels, N. and Jackman, C. H. 2004. Did a gamma-ray burst initiate the late Ordovician mass extinction? International Journal of Astrobiology, 3 (1), 55–61.
  • Neuman, R. B. 1968. Paleogeographic implications of Ordovician shelly fossils in the Magog belt of the Northern Appalachian region. 35–48. In Zen, E., White, W. S., Hadley, J. B. and Thompson, J. B. (eds). Studies of Appalachian geology: northern and maritime. Interscience Publication, New York, 494 pp.
  • Nikitin, I. F. 1976. Ordovician of Kazakhstan. Pt. 1. Stratigraphy. Nauka Kaxakh. Ssr, Publishing House, Alma-Ata, 242 pp.
  • Raup, D. M. and Sepkoski, J. J. 1982. Mass extinctions in the marine fossil record. Science, 215 (4539), 1501–1503.
  • Rohde, R. A. and Muller, R. A. 2005. Cycles in fossil diversity. Nature, 434, 208–210.
  • Rong, J. 1979. The Hirnantia fauna of China with comments on the Ordovician–Silurian boundary. Acta Stratigraphica Sinica, 3, 1–8.
  • Rong, J. 1984. Distribution of the Hirnantia fauna and its meaning. 101–112. In Bruton, D. L. (ed.). Aspects of the Ordovician system. Paleontological Contributions from the University of Oslo, 295, Oxford University Press, 228 pp.
  • Rong, J. and Harper, D. A. T. 1988. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas. Transactions of the Royal Society of Edinburgh, 79, 383–402.
  • Saltzman, M. R. and Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33 (2), 109–112.
  • Schönlaub, H. P. 1971. Palaeo-environmental studies at the Ordovician/Silurian Boundary in the Carnic Alps. 367–378. In Colloque Ordovicien–Silurien, Brest, Mémoires du Bureau de Recherches Géologiques et Minières, 73, 462 pp.
  • Scotese, C. R. 2007. PaleoGIS. Rothwell Group, L.P., Houston, TX. http://www.paleogis.com.
  • Sepkoski, J. J. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. 35–51. In Valentine, J. W. (ed.). Global events and stratigraphy in the Phanerozoic. Princeton University Press, Princeton, 333 pp.
  • Sheehan, P. M. 1973. The relation of Late Ordovician glaciation to the Ordovician–Silurian changeover in North American brachiopod faunas. Lethaia, 6, 147–154.
  • Sheehan, P. M. 2002. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29, 331–364.
  • Stanley, S. M. 1984. Temperature and biotic crises in the marine realm. Geology, 23, 205–208.
  • Swoford, D. 1998. PAUP* v.4.0. Sinauer Associates, Sunderland, MA. http://PAUP*.csit.fsu.edu/.
  • Temple, J. T. 1965. Upper Ordovician braciopods from Poland and Britain. Acta Palaeontologica Polonica, 10, 379–450.
  • van Dam, J. A., Aziz, H. A., Sierra, M. A. A., Hilgen, F. J., Van Den Hoek Ostende, L. W., Lourens, L. J., Mein, P., Van Der Meulen, A. J. and Pelaez-Campomanes, P. 2006. Long-period astronomical forcing of mammal turnover. Nature, 443, 687–691.
  • Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Paris, F., Zalasiewicz, J. A., Sabbe, K., Nōlvak, J., Challands, T. J., Verniers, J. and Servais, T. 2010. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse. Proceedings of the National Academy of Sciences of the United States of America, 107 (34), 14983–14986.
  • Vrba, E. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236.
  • Vrba, E. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy, 73 (1), 1–28.
  • Vrba, E. 1995. The fossil record of African Antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. 385–424. In Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H. (eds). Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, Connecticut, 558 pp.
  • Walker, J. D. and Geissman, J. W. 2009. GSA Geologic time scale. GSA Today, 19 (4–5), 60–61.
PalAss Go! URL: http://go.palass.org/5mn | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+