Skip to content Skip to navigation

Article: Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: systematic and palaeobiological implications

Publication: Palaeontology
Volume: 57
Part: 1
Publication Date: January 2014
Page(s): 37 54
Author(s): Robin I. Knight, Noel J. Morris, Jonathan A. Todd, Lauren E. Howard and Alexander D. Ball
Addition Information

How to Cite

KNIGHT, R. I., MORRIS, N. J., TODD, J. A., HOWARD, L. E., BALL, A. D. 2014. Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: systematic and palaeobiological implications. Palaeontology57, 1, 37–54, doi: 10.1111/pala.12046

Author Information

  • Robin I.  Knight - Chatham, Kent, UK (email: robink2407@aol.com)
  • Noel J. Morris - Department of Earth Sciences, Natural History Museum, London, UK (email: n.morris@nhm.ac.uk)
  • Jonathan A. Todd - Department of Earth Sciences, Natural History Museum, London, UK (email: j.todd@nhm.ac.uk)
  • Lauren E. Howard - Science Facilities Department, Imaging and Analysis Centre, Natural History Museum, London, UK (email: l.howard@nhm.ac.uk)
  • Alexander D. Ball - Science Facilities Department, Imaging and Analysis Centre, Natural History Museum, London, UK (email: a.ball@nhm.ac.uk)

Publication History

  • Issue published online: 6 JAN 2014
  • Article first published online: 13 MAY 2013
  • Manuscript Accepted: 24 MAR 2013
  • Manuscript Received: 24 OCT 2012

Online Version Hosted By

Wiley Online Library (Free Access)
Get Article: Wiley Online Library [Free Access]

References

  • Alyakrinskaya, I. O. 2003. Tissue hemoglobins in Bivalvia (Mollusca). Biology Bulletin30, 617–626.
  • Atkins, D. 1937. On the ciliary mechanisms and interrelationships of Lamellibranchs. Part III: Types of Lamellibranch gills and their food currents. Quarterly Journal of Microscopical Science2, 375–421.
  • Bayne, B. L. and Newell, R. C. 1983. Physiological energetics of marine molluscs. 407–515. In Saleuddin, A. S. M. and Wilbur, K. M. (eds). The Mollusca, Physiology, Part 1. Academic Press, New York, 522 pp.
  • Beninger, P. G., le Pennec, M. and Salaün, M. 1988. New observations of the gills of Placopecten magellanicus (Mollusca: Bivalvia), and the implication for nutrition. I. General anatomy and surface microanatomy.Marine Biology98, 61–70.
  • Briggs, D. E. G. and Kear, A. J. 1993. Fossilization of soft tissues in the laboratory. Science259, 1439–1442.
  • Briggs, D. E. G., Kear, A. J., Martill, D. M. and Wilby, P. R. 1993. Phosphatization of soft‐tissue in experiments and fossils. Journal of the Geological Society150, 1035–1038.
  • Cannuel, R. and Beninger, P. G. 2006. Gill development, functional and evolutionary implications in the Pacific oyster Crassostrea gigas (Bivalvia: Ostreidae). Marine Biology149, 547–563.
  • Cannuel, R., Beninger, P. G., McCombie, H. and Boudry, P. 2009. Gill development and its functional and evolutionary implications in the Blue Mussel Mytilus edulis (Bivalvia: Mytilidae). Biological Bulletin217, 173–188.
  • Carter, J. G., Harries, P., Malchus, N., Sartori, A., Anderson, L., Bieler, R., Bogan, A., Coan, E., Cope, J., Cragg, S., Garcia‐March, J., Hylleberg, J., Kelley, P., Kleeman, K., Kriz, J., McRoberts, C., Mikkelsen, P., Pojeta, J. Jr, Temkin, I., Yancey, T. and Zieritz, A. 2012. Part N, Revised, Volume 1, Chapter 31; Illustrated glossary of the Bivalvia. Paleontological Institute, University of Kansas. Treatise Online48, 1–209.
  • Cognie, B., Barillé, L., Massé, G. and Beninger, P. G. 2003. Selection and processing of large suspended algae in the oyster Crassostrea gigasMarine Ecology Progress Series250, 145–152.
  • Cox, L. R. 1969. General features of Bivalvia, N3–N121. In Moore, R. C. (ed.). Treatise on Invertebrate Paleontology. Part N. Mollusca, 6. Geological Society of America, Boulder, Colorado and University of Kansas Press, Lawrence, Kansas, 489 pp.
  • Dhondt, A. V. 1992. Cretaceous inoceramid biogeography: a review. Palaeogeography, Palaeoclimatology, Palaeoecology92, 217–232.
  • Distel, D. L. and Felbeck, M. 1987. Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a re‐examination of the functional morphology of the gills as bacteria‐bearing organs. Marine Biology96, 79–86.
  • Dufour, S. C. 2005. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biological Bulletin208, 200–212.
  • Dufour, S. C. and Beninger, P. G. 2001. A functional interpretation of cilia and mucocyte distributions on the abfrontal surface of bivalve gills. Marine Biology138, 295–309.
  • Dzik, J. and Sulej, T. 2007. A review of the early Late Triassic Krasiejow biota from Silesia, Poland. Palaeontologia Polonica64, 3–27.
  • Frenkiel, L., Gros, O. and Mouëza, M. 1996. Gill structure in Lucina pectinata (Bivalvia: Lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur‐oxidising bacteria. Marine Biology125, 511–524.
  • Gainey, L. F. Jr 2010. Seasonal potentiation of gill muscle contraction in four species of bivalve molluscs. Journal of Experimental Marine Biology and Ecology391, 43–49.
  • Gainey, L. F. Jr, Walton, J. C. and Greenberg, M. J. 2003. Branchial musculature of a venerid clam: pharmacology, distribution and innervation. Biological Bulletin204, 81–95.
  • Grossman, E. L. 1993. Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts: comment and reply. Geology21, 94–96.
  • Harper, E. M. and Todd, J. A. 1995. Preservation of the adductor muscle of an Upper Jurassic oyster. Paläontologische Zeitschrift69, 55–59.
  • Harries, P. J. and Crampton, J. S. 1998. The inoceramids. The American Paleontologist6 (4), 2–6.
  • Heinz, R. 1932. Aus der neuen systematic der Inoceramen (Inoceramen XVII). Mitteilungen aus dem Mineralogisch – Geologischen Staatsinstitut in Hamburg15, 1–26.
  • Henderson, R. A. 2004. A Mid‐Cretaceous association of shell beds and organic rich shale: bivalve exploitation of a nutrient‐rich, anoxic sea‐floor environment. Palaios19, 156–169.
  • Henderson, R. A. and Kennedy, W. J. 2002. Occurrence of the ammonite Goodhallites goodhalli (J. Sowerby) in Eromanga Basin, Queensland; an index species for the late Albian (Cretaceous). Alcheringa26, 233–247.
  • Järnegren, J. and Altin, D. 2006. Filtration and respiration of the deep living bivalve Acesta excavata (J. C. Fabricius, 1779) (Bivalvia; Limidae). Journal of Experimental Marine Biology and Ecology334, 122–129.
  • Johnston, P. A. and Collom, C. J. 1998. The bivalve heresies – Inoceramidae are Cryptodonta, not Pteriomorphia. 347–360. In Johnston, P. A. and Hagart, J. W. (eds). Bivalves; an eon of evolution – palaeobiological studies honouring Norman D. Newell. University of Calgary Press, Calgary, 461 pp.
  • Kauffman, E. G. 1975. Dispersal and biostratigraphical potential of Cretaceous benthonic Bivalvia in the Western Interior. In Caldwell, W. G. E. (ed.). The Cretaceous system in the Western Interior of North America. Special Paper of the Geological Association of Canada, 13, 163–194.
  • Kauffman, E. G. and Powell, J. D. 1977. Paleontology. In Kauffman, E. G., Hattin, D. E. and Powell, J. D. (eds). Stratigraphic, paleontologic and paleoenvironmental analysis of the Upper Cretaceous rocks of the Cimarron County, Northwestern Oklahoma. Memoirs of the Geological Society of America, 149, 47–114.
  • Kauffman, E. G., Harries, P. J., Meyer, C., Villamil, T., Arango, C. and Jaecks, G. 2007. Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. Journal of Paleontology81, 64–81.
  • Klug, C., Hagdorn, H. and Montenari, M. 2005. Phosphatized soft‐tissue in Triassic bivalves. Palaeontology48 (4), 833–852.
  • Knight, R. I. and Morris, N. J. 2009. A reconsideration of the origins of the ‘typical’ Cretaceous inoceramid calcitic hinge plate in the light of new ultrastructural observations from some Jurassic ‘inoceramids’.Palaeontology52, 963–989.
  • Koschelkina, Z. V. 1969. General characteristics and morphology of the genus RetroceramusIn Shilo, N. A. (ed.). Jurassic and Cretaceous inocerams of the northeastern USSR. Trudy Severo‐Vostochnogo Kompleksnogog Nauchno‐Issledovatel'skogo Instituta (SVKNII) [Magadan], 32, 5–13. [In Russian].
  • Kříž, J. 2007. Origin, evolution and classification of the new superorder Nepiomorphia (Mollusca, Bivalvia, Lower Palaeozoic). Palaeontology50, 1341–1365.
  • Le Pennec, M., Beninger, P. G. and Herry, A. 1988. New observations of the gills of Placopecten magellanicus (Mollusca: Bivalvia), and the implication for nutrition. II. Internal anatomy and microanatomy. Marine Biology98, 229–237.
  • Logan, W. N. 1898. The invertebrates of the Benton, Niobrara and Fort Pierre groups. University Geological Survey of Kansas, Paleontology Pt.1Upper Cretaceous4, 431–518.
  • Ludbrook, N. H. 1966. Cretaceous biostratigraphy of the Great Artesian Basin in South Australia. Bulletin of the Geological Survey of South Australia40, 1–223.
  • MacLeod, K. G. and Hoppe, K. A. 1992. Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts. Geology20, 117–120.
  • McCoy, F. 1865. Note on the Cretaceous deposits of Australia. Annals and Magazine of Natural History16, 333–334.
  • Medler, S. and Silverman, H. 1997. Functional organization of intrinsic gill muscles in zebra mussels, Dreissena polymorpha (Mollusca: Bivalvia), and response to transmitters in vitroInvertebrate Biology116(3), 200–212.
  • Medler, S. and Silverman, H. 1998. Extracellular matrix and muscle fibers in the gills of freshwater bivalves. Invertebrate Biology117 (4), 288–298.
  • Mikkelsen, P. M. and Bieler, R. 2008. Seashells of southern Florida: living marine molluscs of the Florida Keys and adjacent regions, Bivalves. Princeton University Press, Princeton, NJ, 503 pp.
  • Pouvreau, S., Jonquieres, G. and Buestel, D. 1999. Filtration by the pearl oyster, Pinctada margaritifera, under conditions of low seston load and small particle size in tropical lagoon habitat. Aquaculture176, 295–314.
  • Pouvreau, S., Bodoy, A. and Buestel, D. 2000. In situ suspension feeding of the pearl oyster Pinctada margaritifera: combined effects of body size and weather‐related seston composition. Aquaculture181, 91–113.
  • Reid, R. G. B. 1980. Aspects of the biology of a gutless species of Solemya (Bivalvia: Protobranchia). Canadian Journal of Zoology58, 386–393.
  • Ridewood, W. G. 1902. On the structure of the gills of the Lamellibranchia. Philosophical Transactions of the Royal Society of LondonB195, 147–284.
  • Sageman, B. B. and Bina, C. R. 1997. Diversity and species abundance patterns in Late Cenomanian blackshale biofacies, Western Interior, U.S. Palaios12, 449–466.
  • Scott, G. R. and Cobban, W. A. 1964. Stratigraphy of the Niobrara Formation at Pueblo, Colorado. United States Geological Survey Professional Paper454‐L, L1–L30.
  • Seitz, O. 1967. Die Inoceramen des Santon und Unter‐Campan von Nordwest Deutschland, III Teil. Beihefte zum Geologischen JahrbuchHeft 75, Hanover, Germany, 171 pp.
  • Skawina, A. 2010. Experimental decay of gills in freshwater bivalves as a key to understanding their preservation in Upper Triassic lacustrine deposits. Palaios25, 215–220.
  • Stanley, S. M. 1972. Functional morphology and evolution of bysally attached bivalve mollusks. Journal of Paleontology46 (2), 165–212.
  • Stewart, J. D. 1990. Preliminary account of halecostome‐inoceramid commensalism in the Upper Cretaceous of Kansas. 51–57. In Boucot, A. (ed.). Evolutionary Palaeobiology of Behaviour and Coevolution. Elsevier, Amsterdam, 582 pp.
  • Taylor, J. D. and Glover, E. A. 2006. Lucinidae (Bivalvia) – the most diverse group of symbiotic molluscs. Zoological Journal of the Linnean Society148, 421–438.
  • Temkin, I. 2006. Morphological perspective on the classification and evolution of Recent Pterioidea (Mollusca: Bivalvia). Zoological Journal of the Linnean Society148, 253–312.
  • Voigt, S. 1995. Palaeobiogeography of early Late Cretaceous inoceramids in the context of a new global palaeogeography. Cretaceous Research16, 343–356.
  • Ward, J. E., Levinton, J. S., Shumway, S. E. and Cucci, T. 1998. Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Marine Biology131, 283–292.
  • Whyte, M. A. 1992. Phosphate gill supports in living and fossil bivalves. 427–431. In Suga, S. and Nakahara, H. (eds). Mechanisms and phylogeny of mineralisation in biology systems. Springer, Tokyo, 517 pp.
  • Wilby, P. R. and Briggs, D. E. G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatised soft tissues. Geobios20, 493–502.
  • Wilby, P. R. and Whyte, M. A. 1995. Phosphatized soft tissues in bivalves from the Portland Roach of Dorset (Upper Jurassic). Geological Magazine132, 117–120.
  • Yonge, C. M. 1926. Structure and physiology of the organs of feeding and digestion in Ostrea edulisJournal of the Marine Biological Association of the United Kingdom14, 295–386.
  • Zardus, J. D. 2002. Protobranch bivalves. Advances in Marine Biology42, 1–65.
PalAss Go! URL: http://go.palass.org/5mu | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+