Skip to content Skip to navigation

Article: Origins and early evolution of arthropods

Publication: Palaeontology
Volume: 57
Part: 3
Publication Date: May 2014
Page(s): 457 468
Author(s): <p>Gregory D. Edgecombe and David A. Legg</p>
Addition Information

How to Cite

EDGECOMBE, G. D. and LEGG, D. A. 2014, Origins and early evolution of arthropods. Palaeontology, 57, 3, 457–468. doi: 10.1111/pala.12105

Author Information

  • Gregory D. Edgecombe - Department of Earth Sciences, The Natural History Museum, London, UK (email: g.edgecombe@nhm.ac.uk)
  • David A. Legg - Oxford University Museum of Natural History, Oxford, UK (email: david.legg@oum.ox.ac.uk)

Publication History

  • Issue published online: 7 MAY 2014
  • Article first published online: 18 MAR 2014
  • Manuscript Accepted: 4 FEB 2014
  • Manuscript Received: 13 JAN 2014

Online Version Hosted By

Wiley Online Library (Free Access)
Get Article: Wiley Online Library [Free Access]

References

  • Andrew, D. R. 2011. A new view of insect–crustacean relationships II. Inferences from expressed sequence tags and comparisons with neural cladistics. Arthropod Structure & Development, 40, 289–302.
  • Boxshall, G. A. 2007. Crustacean classification: on-going controversies and unresolved problems. Zootaxa, 1668, 313–325.
  • Budd, G. E. 2001. Tardigrades as ‘stem-group arthropods’: the evidence from the Cambrian fauna. Zoologischer Anzeiger, 240, 265–279.
  • Budd, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417, 271–275.
  • Budd, G. E. 2008. Head structure in upper stem-group arthropods. Palaeontology, 51, 561–573.
  • Budd, G. E. and Telford, M. J. 2009. The origin and evolution of arthropods. Nature, 457, 812–817.
  • Campbell, L. I., Rota-Stabelli, O., Edgecombe, G. D., Marchioro, T., Longhorn, S. J., Philippe, H., Telford, M. J., Rebecchi, L., Peterson, K. J. and Pisani, D. 2011. MicroRNAs and phylogenomics resolve the phylogenetic relationships of the Tardigrada, and suggest the velvet worms as the sister group of Arthropoda. Proceedings of the National Academy of Sciences of the United States of America, 108, 15920–15924.
  • Cao, Z., Wu, Y., Hao, P., Di, Z., He, Y., Chen, Z., Yang, W., Shen, Z., He, X., Sheng, J., Xu, X., Pan, B., Feng, J., Yang, X., Hong, W., Zhao, W., Li, Z., Huang, K., Li, T., Kong, Y., Liu, H., Jiang, D., Zhang, B., Hu, J., Hu, Y., Wang, B., Dai, J., Yuan, B., Feng, Y., Huang, W., Xing, X., Zhao, G., Li, X., Li, Y. and Li, W. 2013. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nature Communications, 4, 2602.
  • Caron, J.-B., Smith, M. R. and Harvey, T. H. P. 2013. Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proceedings of the Royal Society B: Biological Sciences, 280 (1767), 20131613. doi: 10.1098/rspb.2013.1613.
  • Daley, A. C. and Edgecombe, G. D. 2014. Morphology of Anomalocaris canadensis from the Burgess Shale. Journal of Paleontology, 88, 68–91.
  • Daley, A. C., Budd, G. E., Caron, J.-B., Edgecombe, G. D. and Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323, 1597–1600.
  • Daley, A. C., Budd, G. E. and Caron, J.-B. 2013. Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah. Journal of Systematic Palaeontology, 11, 743–787.
  • Damen, W G. M., Hausdorf, M., Seyfarth, E.-A. and Tautz, D. 1998. A conserved mode of head segmentation in arthropods revealed by the expression of Hox genes in a spider. Proceedings of the National Academy of Sciences of the United States of America, 95, 10665–10670.
  • Dell'Ampio, E., Meusemann, K., Szucsich, N. U., Peters, R. S., Meyer, B., Borner, J., Petersen, M., Aberer, A. J., Stamatakis, A., Walzl, M. G., Minh, B. Q., von Haeseler, A., Ebersberger, I., Pass, G. and Misof, B. 2014. Decisive data sets in phylogenomics: lessons from studies on the phylogenetic relationships of primarily wingless insects. Molecular Biology & Evolution, 31(1), 239–249. doi: 10.1093/molbev/mst196.
  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E., Rouse, G. W., Obst, M., Edgecombe, G. D., Sørensen, M. V., Hadock, S. H. D., Schmidt-Rhaesa, A., Okusu, A., Kristensen, R., Wheeler, W. C., Martindale, M. Q. and Giribet, G. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.
  • Dzik, J. 2011. The xenusian-to-anomalocaridid transition within the lobopodians. Bollettino della Società Paleontologica Italiana, 50, 65–74.
  • Edgecombe, G. D. 2004. Morphological data, extant Myriapoda, and the myriapod stem-group. Contributions to Zoology, 73, 207–252.
  • Edgecombe, G. D. 2010a. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development, 39, 74–87.
  • Edgecombe, G. D. 2010b. Palaeomorphology: fossils and the inference of cladistic relationships. Acta Zoologica, 91, 72–80.
  • Edgecombe, G. D. and Legg, D.A. 2013. The arthropod fossil record. 393–425. In Minelli, A., Boxshall, G. and Fusco, G. (eds). Arthropod biology and evolution – molecules, development, morphology. Springer, 532 pp.
  • Edgecombe, G. D., García-Bellido, D. C. and Paterson, J. R. 2011. A new leanchoiliid megacheiran arthropod from the lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontologica Polonica, 56, 373–388.
  • Eriksson, B. J., Tait, N. N., Budd, G. E., Janssen, R. and Akam, M. 2010. Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Development Genes & Evolution, 220, 117–122.
  • Frase, T. and Richter, S. 2013. The fate of the onychophoran antenna. Development Genes & Evolution, 223, 247–251.
  • Giribet, G. and Edgecombe, G. D. 2012. Reevaluating the arthropod tree of life. Annual Review of Entomology, 57, 167–186.
  • Giribet, G., Edgecombe, G. D. and Wheeler, W. C. 2001. Arthropod phylogeny based on eight molecular loci and morphology. Nature, 413, 157–161.
  • Harvey, T. H. P. and Butterfield, N. J. 2008. Sophisticated particle-feeding in a large Early Cambrian crustacean. Nature, 452, 868–871.
  • Harvey, T. H. P. and Pedder, B. E. 2013. Copepod mandible palynomorphs from the Nolichucky Shale (Cambrian, Tennessee): implications for the taphonomy and recovery of small carbonaceous fossils. Palaios, 28, 278–284.
  • Harvey, T. H. P., Vélez, M. I. and Butterfield, N. J. 2012. Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proceedings of the National Academy of Sciences of the United States of America, 109, 1589–1594.
  • Harzsch, S., Melzer, R. R. and Müller, C. H. G. 2007. Mechanisms of eye development and evolution of the arthropod visual system: the lateral eyes of Myriapoda are not modified insect ommatidia. Organisms Diversity & Evolution, 7, 20–32.
  • Haug, J. T., Maas, A. and Waloszek, D. 2010a. †Henningsmoenicaris scutula, †Sandtorpia vestrogothienis gen. et sp. nov. and heterochronic events in early crustacean evolution. Transactions of the Royal Society of Edinburgh: Earth & Environmental Science, 100, 311–350.
  • Haug, J. T., Waloszek, D., Haug, C. and Maas, A. 2010b. High-level phylogenetic analysis using developmental sequences: The Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure & Development, 39, 154–173.
  • Haug, J. T., Waloszek, D., Haug, C., Liu, Y. and Haug, C. 2012. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology, 55, 369–399.
  • Kühl, G., Briggs, D. E. G. and Rust, J. 2009. A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science, 323, 771–773.
  • Lamsdell, J. C., Stein, M. and Selden, P. A. 2013. Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods. Naturwissenschaften, 100, 811–825.
  • Lee, M. S. Y., Soubrier, J. and Edgecombe, G. D. 2013. Rates of phenotypic and genomic evolution during the Cambrian explosion. Current Biology, 23, 1889–1895.
  • Legg, D. 2013. Multi-segmented arthropods from the middle Cambrian of British Columbia (Canada). Journal of Paleontology, 87, 493–501.
  • Legg, D. and Caron, J.-B. 2013. New middle Cambrian bivalved arthropods from the Burgess Shale, British Columbia. Palaeontology, published online 18 November 2013, doi: 10.1111/pala.12081.
  • Legg, D. and Vannier, J. 2013. The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia, 46, 540–550.
  • Legg, D., Ma, X., Wolfe, J. M., Ortega-Hernández, J., Edgecombe, G. D. and Sutton, M. D. 2011. Lobopodian phylogeny reanalysed. Nature, 476, E2–E3.
  • Legg, D., Sutton, M. D., Edgecombe, G. D. and Caron, J.-B. 2012. Cambrian bivalved arthropod reveals origins of arthrodisation. Proceedings of the Royal Society B: Biological Sciences, 279, 4699–4704.
  • Legg, D., Sutton, M. D. and Edgecombe, G. D. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications, 4, 2485.
  • Lin, J.-P., Gon, S. M. III, Gehling, J. G.,Babcock, L. E., Zhao, Y.-L., Zhang, X.-L., Hu, S.-X., Yuan, J.-L., Yu, M.-Y. and Peng, J. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology, 18, 33–45.
  • Liu, J., Steiner, M., Dunlop, J. A., Keupp, H., Shu, D., Ou, Q., Han, J., Zhang, Z. and Zhang, X. 2011. An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature, 470, 526–530.
  • Ma, X., Hou, X., Edgecombe, G. D. and Stausfeld, N. J. 2012a. Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490, 258–261.
  • Ma, X., Hou, X., Aldridge, R. J., Siveter, D. J., Siveter, D. J., Gabbott, S. E., Purnell, M. A., Parker, A. R. and Edgecombe, G. D. 2012b. Morphology of Cambrian lobopodian eyes from the Chengjiang Lagersttte and their evolutionary significance. Arthropod Structure & Development, 41, 495–504.
  • Ma, X., Edgecombe, G. D., Legg, D. A. and Hou, X. 2013. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis. Journal of Systematic Palaeontology, published online 29 May 2013, doi: 10.1080/14772019.2013.770418.
  • Mayer, G., Whitington, P. M., Sunnucks, P. and Pflüger, H.-J. 2010. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evolutionary Biology, 10, 255. doi: 10.1186/1471-2148-10-255.
  • Mayer, G., Martin, C., Rüdiger, J., Kauschke, S., Stevenson, P. A., Poprawa, I., Hohberg, K., Schill, R. O., Pflüger, H.-J. and Schlegel, M. 2013a. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evolutionary Biology, 13, 230. doi: 10.1186/1471-2148-13-230.
  • Mayer, G., Kauschke, S., Rüdiger, J. and Stevenson, P. A. 2013b. Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One, 8 (3), e59090. doi: 10.1371/journal.pone.0059090.
  • Meusemann, K., von Reumont, B. M., Simon, S., Roeding, F., Strauss, S., Kück, P., Ebersberger, I., Walzl, M., Pass, G., Breuers, S., Achter, V., von Haeseler, A., Burmester, T., Hadrys, H., Wgele, J. W. and Misof, B. 2010. A phylogenomic approach to resolve the arthropod tree of life. Molecular Biology & Evolution, 27, 2451–2464.
  • Mittmann, B. and Scholtz, G. 2003. Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Development, Genes & Evolution, 213, 9–17.
  • Mounce, R. C. P. and Wills, M. A. 2011. Phylogenetic position of Diania challenged. Nature, 476, E1. doi: 10.1038/nature10266.
  • Nielsen, C. 1995. Animal evolution: interrelationships of the living phyla. Oxford University Press, Oxford, 467 pp.
  • Oakley, T. H., Wolfe, J. M., Lindgren, A. R. and Zaharoff, A. K. 2013. Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement and pancrustacean phylogeny. Molecular Biology & Evolution, 30, 215–233.
  • Ou, Q., Liu, J., Shu, D., Han, J., Zhang, X., Wan, X. and Lei, Q. 2011. A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagersttte, southwestern China, and its phylogenetic implications. Journal of Paleontology, 85, 587–594.
  • Ou, Q., Shu, D. and Mayer, G. 2012. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nature Communications, 3, 1261.
  • Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B. and Edgecombe, G. D. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480, 237–240.
  • Persson, D. K., Halberg, K. A., Jørgensen, A., Møbjerg, N. and Kristensen, R. M. 2012. Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): tardigrade brain structure supports the clade Panarthropoda. Journal of Morphology, 273, 1227–1245.
  • Peterson, K. J., Cotton, J. A., Gehling, J. G. and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1435–1443.
  • Regier, J. C. and Zwick, A. 2011. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLoS One, 6, e23408. doi: 10.1371/journal.pone.0023408.
  • Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W. and Cunningham, C. W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–1083.
  • Rehm, P., Borner, J., Meusemann, K., von Reumont, B. M., Simon, S., Hadrys, H., Misof, B. and Burmester, T. 2011. Dating the arthropod tree based on large-scale transcriptome data. Molecular Phylogenetics & Evolution, 61, 88–887.
  • von Reumont, B. M., Renner, R. A., Wills, M. A., Dell'ampio, E., Pass, G., Ebersberger, I., Meyer, B., Koenemann, S., Iliffe, T. M., Stamatakis, A., Niehuis, O., Meusemann, K. and Misof, B. 2012. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Molecular Biology & Evolution, 29, 1031–1045.
  • Rota-Stabelli, O., Campbell, L., Brinkmann, H., Edgecombe, G. D., Longhorn, S. J., Peterson, K. J., Pisani, D., Philippe, H. and Telford, M. J. 2011. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proceedings of the Royal Society B: Biological Sciences, 278, 298–306.
  • Rota-Stabelli, O., Lartillot, N., Philippe, H. and Pisani, D. 2013a. Serine codon-usage bias in deep phylogenomics: pancrustacean relationships as a case study. Systematic Biology, 62, 121–133.
  • Rota-Stabelli, O., Daley, A. C. and Pisani, D. 2013b. Molecular timetrees reveal a Cambrian colonization of land a new scenario for ecdysozoan evolution. Current Biology, 23, 392–398.
  • Schoenemann, B. and Clarkson, E. N. K. 2012. At first sight – functional analysis of Lower Cambrian eye systems. Palaeontographica A, 297, 123–149.
  • Scholtz, G. and Edgecombe, G. D. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development, Genes & Evolution, 216, 395–415.
  • Schulze, C. and Schmidt-Rhaesa, A. 2013. The architecture of the nervous system of Echiniscus testudo (Echiscioidea, Heterotardigrada). Journal of Limnology, 72, 44–53.
  • Shultz, J. W. 2007. A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society, 150, 221–265.
  • Siveter, D. J., Briggs, D. E. G., Siveter, D. J., Sutton, M. D., Legg, D. and Joomun, S. 2014. A Silurian short-great-appendage arthropod. Proceedings of the Royal Society B: Biological Sciences, 281 (1778), 21032986. doi: 10.1098/rspb.2013.2986.
  • Stein, M., Budd, G. E., Peel, J. S. and Harper, D. A. T. 2013. Arthroaspis n. gen., a common element of the Sirius Passet Lagersttte (Cambrian, North Greenland), sheds light on trilobite ancestry. BMC Evolutionary Biology, 13, 99. doi: 10.1186/1471-2148-13-99.
  • Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. and Strausfeld, N. J. 2013. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature, 502, 364–367.
  • Telford, M. J. and Thomas, R. H. 1998. Expression of Homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proceedings of the National Academy of Sciences of the United States of America, 95, 10671–10675.
  • Waloszek, D., Chen, J., Maas, A. and Wang, X. 2005. Early Cambrian arthropods – new insights into arthropod head and structural evolution. Arthropod Structure & Development, 34, 189–205.
  • Waloszek, D., Maas, A., Chen, J. and Stein, M. 2007. Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 273–287.
  • Wheat, C. W. and Wahlberg, N. 2013. Phylogenomic insights into the Cambrian explosion, the colonization of land and the evolution of flight in Arthropoda. Systematic Biology, 62, 93–109.
  • Wolfe, J. M. and Hegna, T. A. 2013. Testing the phylogenetic position of Cambrian pancrustacean larval fossils by coding ontogenetic stages. Cladistics, published online 27 August 2013, doi: 10.1111/cla.12051.
  • Yang, J., Ortega-Hernández, J., Butterfield, N. J. and Zhang, X. 2013. Specialized appendages in fuxianhuiids and the head organization of early arthropods. Nature, 494, 468–471.
  • Zhang, X.-Q., Siveter, D. J., Waloszek, D. and Maas, A. 2007. An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature, 449, 595–598.
  • Zhang, X.-Q., Maas, A., Haug, J. T., Siveter, D. J. and Waloszek, D. 2010. A eucrustacean metanauplius from the lower Cambrian. Current Biology, 20, 1075–1079.
  • Zwick, A., Regier, J. C. and Zwickl, D. J. 2012. Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino-acid models. PLoS One, 7 (11), e47450. doi: 10.1371/journal.pone.0047450.
PalAss Go! URL: http://go.palass.org/5qf | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+